opus/dnn/torch/rdovae
2023-01-13 11:48:04 +00:00
..
libs updated torch framework to include quantization 2023-01-13 11:48:04 +00:00
packets added pytorch implementation of RDOVAE 2022-11-23 11:02:29 +00:00
rdovae added pytorch implementation of RDOVAE 2022-11-23 11:02:29 +00:00
export_rdovae_weights.py updated torch framework to include quantization 2023-01-13 11:48:04 +00:00
fec_encoder.py added pytorch implementation of RDOVAE 2022-11-23 11:02:29 +00:00
import_rdovae_weights.py added pytorch implementation of RDOVAE 2022-11-23 11:02:29 +00:00
README.md added pytorch implementation of RDOVAE 2022-11-23 11:02:29 +00:00
requirements.txt updated torch framework to include quantization 2023-01-13 11:48:04 +00:00
train_rdovae.py added pytorch implementation of RDOVAE 2022-11-23 11:02:29 +00:00

Rate-Distortion-Optimized Variational Auto-Encoder

Setup

The python code requires python >= 3.6 and has been tested with python 3.6 and python 3.10. To install requirements run

python -m pip install -r requirements.txt

Training

To generate training data use dump date from the main LPCNet repo

./dump_data -train 16khz_speech_input.s16 features.f32 data.s16

To train the model, simply run

python train_rdovae.py features.f32 output_folder

To train on CUDA device add --cuda-visible-devices idx.

ToDo

  • Upload checkpoints and add URLs