opus/dnn/torch/rdovae/import_rdovae_weights.py
2022-11-23 11:02:29 +00:00

143 lines
No EOL
6 KiB
Python

"""
/* Copyright (c) 2022 Amazon
Written by Jan Buethe */
/*
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
"""
import os
os.environ['CUDA_VISIBLE_DEVICES'] = ""
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('exchange_folder', type=str, help='exchange folder path')
parser.add_argument('output', type=str, help='path to output model checkpoint')
model_group = parser.add_argument_group(title="model parameters")
model_group.add_argument('--num-features', type=int, help="number of features, default: 20", default=20)
model_group.add_argument('--latent-dim', type=int, help="number of symbols produces by encoder, default: 80", default=80)
model_group.add_argument('--cond-size', type=int, help="first conditioning size, default: 256", default=256)
model_group.add_argument('--cond-size2', type=int, help="second conditioning size, default: 256", default=256)
model_group.add_argument('--state-dim', type=int, help="dimensionality of transfered state, default: 24", default=24)
model_group.add_argument('--quant-levels', type=int, help="number of quantization levels, default: 40", default=40)
args = parser.parse_args()
import torch
from rdovae import RDOVAE
from wexchange.torch import load_torch_weights
exchange_name_to_name = {
'encoder_stack_layer1_dense' : 'core_encoder.module.dense_1',
'encoder_stack_layer3_dense' : 'core_encoder.module.dense_2',
'encoder_stack_layer5_dense' : 'core_encoder.module.dense_3',
'encoder_stack_layer7_dense' : 'core_encoder.module.dense_4',
'encoder_stack_layer8_dense' : 'core_encoder.module.dense_5',
'encoder_state_layer1_dense' : 'core_encoder.module.state_dense_1',
'encoder_state_layer2_dense' : 'core_encoder.module.state_dense_2',
'encoder_stack_layer2_gru' : 'core_encoder.module.gru_1',
'encoder_stack_layer4_gru' : 'core_encoder.module.gru_2',
'encoder_stack_layer6_gru' : 'core_encoder.module.gru_3',
'encoder_stack_layer9_conv' : 'core_encoder.module.conv1',
'statistical_model_embedding' : 'statistical_model.quant_embedding',
'decoder_state1_dense' : 'core_decoder.module.gru_1_init',
'decoder_state2_dense' : 'core_decoder.module.gru_2_init',
'decoder_state3_dense' : 'core_decoder.module.gru_3_init',
'decoder_stack_layer1_dense' : 'core_decoder.module.dense_1',
'decoder_stack_layer3_dense' : 'core_decoder.module.dense_2',
'decoder_stack_layer5_dense' : 'core_decoder.module.dense_3',
'decoder_stack_layer7_dense' : 'core_decoder.module.dense_4',
'decoder_stack_layer8_dense' : 'core_decoder.module.dense_5',
'decoder_stack_layer9_dense' : 'core_decoder.module.output',
'decoder_stack_layer2_gru' : 'core_decoder.module.gru_1',
'decoder_stack_layer4_gru' : 'core_decoder.module.gru_2',
'decoder_stack_layer6_gru' : 'core_decoder.module.gru_3'
}
if __name__ == "__main__":
checkpoint = dict()
# parameters
num_features = args.num_features
latent_dim = args.latent_dim
quant_levels = args.quant_levels
cond_size = args.cond_size
cond_size2 = args.cond_size2
state_dim = args.state_dim
# model
checkpoint['model_args'] = (num_features, latent_dim, quant_levels, cond_size, cond_size2)
checkpoint['model_kwargs'] = {'state_dim': state_dim}
model = RDOVAE(*checkpoint['model_args'], **checkpoint['model_kwargs'])
dense_layer_names = [
'encoder_stack_layer1_dense',
'encoder_stack_layer3_dense',
'encoder_stack_layer5_dense',
'encoder_stack_layer7_dense',
'encoder_stack_layer8_dense',
'encoder_state_layer1_dense',
'encoder_state_layer2_dense',
'decoder_state1_dense',
'decoder_state2_dense',
'decoder_state3_dense',
'decoder_stack_layer1_dense',
'decoder_stack_layer3_dense',
'decoder_stack_layer5_dense',
'decoder_stack_layer7_dense',
'decoder_stack_layer8_dense',
'decoder_stack_layer9_dense'
]
gru_layer_names = [
'encoder_stack_layer2_gru',
'encoder_stack_layer4_gru',
'encoder_stack_layer6_gru',
'decoder_stack_layer2_gru',
'decoder_stack_layer4_gru',
'decoder_stack_layer6_gru'
]
conv1d_layer_names = [
'encoder_stack_layer9_conv'
]
embedding_layer_names = [
'statistical_model_embedding'
]
for name in dense_layer_names + gru_layer_names + conv1d_layer_names + embedding_layer_names:
print(f"loading weights for layer {exchange_name_to_name[name]}")
layer = model.get_submodule(exchange_name_to_name[name])
load_torch_weights(os.path.join(args.exchange_folder, name), layer)
checkpoint['state_dict'] = model.state_dict()
torch.save(checkpoint, args.output)