mirror of
https://github.com/xiph/opus.git
synced 2025-05-24 20:29:12 +00:00
213 lines
7.9 KiB
Python
213 lines
7.9 KiB
Python
"""
|
|
/* Copyright (c) 2022 Amazon
|
|
Written by Jan Buethe and Jean-Marc Valin */
|
|
/*
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions
|
|
are met:
|
|
|
|
- Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
|
|
- Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
|
|
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
"""
|
|
|
|
import os
|
|
import subprocess
|
|
import argparse
|
|
|
|
os.environ['CUDA_VISIBLE_DEVICES'] = ""
|
|
|
|
parser = argparse.ArgumentParser(description='Encode redundancy for Opus neural FEC. Designed for use with voip application and 20ms frames')
|
|
|
|
parser.add_argument('input', metavar='<input signal>', help='audio input (.wav or .raw or .pcm as int16)')
|
|
parser.add_argument('checkpoint', metavar='<weights>', help='model checkpoint')
|
|
parser.add_argument('q0', metavar='<quant level 0>', type=int, help='quantization level for most recent frame')
|
|
parser.add_argument('q1', metavar='<quant level 1>', type=int, help='quantization level for oldest frame')
|
|
parser.add_argument('output', type=str, help='output file (will be extended with .fec)')
|
|
|
|
parser.add_argument('--dump-data', type=str, default='./dump_data', help='path to dump data executable (default ./dump_data)')
|
|
parser.add_argument('--num-redundancy-frames', default=52, type=int, help='number of redundancy frames per packet (default 52)')
|
|
parser.add_argument('--extra-delay', default=0, type=int, help="last features in packet are calculated with the decoder aligned samples, use this option to add extra delay (in samples at 16kHz)")
|
|
parser.add_argument('--lossfile', type=str, help='file containing loss trace (0 for frame received, 1 for lost)')
|
|
parser.add_argument('--debug-output', action='store_true', help='if set, differently assembled features are written to disk')
|
|
|
|
args = parser.parse_args()
|
|
|
|
import numpy as np
|
|
from scipy.io import wavfile
|
|
import torch
|
|
|
|
from rdovae import RDOVAE
|
|
from packets import write_fec_packets
|
|
|
|
torch.set_num_threads(4)
|
|
|
|
checkpoint = torch.load(args.checkpoint, map_location="cpu")
|
|
model = RDOVAE(*checkpoint['model_args'], **checkpoint['model_kwargs'])
|
|
model.load_state_dict(checkpoint['state_dict'], strict=False)
|
|
model.to("cpu")
|
|
|
|
lpc_order = 16
|
|
|
|
## prepare input signal
|
|
# SILK frame size is 20ms and LPCNet subframes are 10ms
|
|
subframe_size = 160
|
|
frame_size = 2 * subframe_size
|
|
|
|
# 91 samples delay to align with SILK decoded frames
|
|
silk_delay = 91
|
|
|
|
# prepend zeros to have enough history to produce the first package
|
|
zero_history = (args.num_redundancy_frames - 1) * frame_size
|
|
|
|
# dump data has a (feature) delay of 10ms
|
|
dump_data_delay = 160
|
|
|
|
total_delay = silk_delay + zero_history + args.extra_delay - dump_data_delay
|
|
|
|
# load signal
|
|
if args.input.endswith('.raw') or args.input.endswith('.pcm'):
|
|
signal = np.fromfile(args.input, dtype='int16')
|
|
|
|
elif args.input.endswith('.wav'):
|
|
fs, signal = wavfile.read(args.input)
|
|
else:
|
|
raise ValueError(f'unknown input signal format: {args.input}')
|
|
|
|
# fill up last frame with zeros
|
|
padded_signal_length = len(signal) + total_delay
|
|
tail = padded_signal_length % frame_size
|
|
right_padding = (frame_size - tail) % frame_size
|
|
|
|
signal = np.concatenate((np.zeros(total_delay, dtype=np.int16), signal, np.zeros(right_padding, dtype=np.int16)))
|
|
|
|
padded_signal_file = os.path.splitext(args.input)[0] + '_padded.raw'
|
|
signal.tofile(padded_signal_file)
|
|
|
|
# write signal and call dump_data to create features
|
|
|
|
feature_file = os.path.splitext(args.input)[0] + '_features.f32'
|
|
command = f"{args.dump_data} -test {padded_signal_file} {feature_file}"
|
|
r = subprocess.run(command, shell=True)
|
|
if r.returncode != 0:
|
|
raise RuntimeError(f"command '{command}' failed with exit code {r.returncode}")
|
|
|
|
# load features
|
|
nb_features = model.feature_dim + lpc_order
|
|
nb_used_features = model.feature_dim
|
|
|
|
# load features
|
|
features = np.fromfile(feature_file, dtype='float32')
|
|
num_subframes = len(features) // nb_features
|
|
num_subframes = 2 * (num_subframes // 2)
|
|
num_frames = num_subframes // 2
|
|
|
|
features = np.reshape(features, (1, -1, nb_features))
|
|
features = features[:, :, :nb_used_features]
|
|
features = features[:, :num_subframes, :]
|
|
|
|
# quant_ids in reverse decoding order
|
|
quant_ids = torch.round((args.q1 + (args.q0 - args.q1) * torch.arange(args.num_redundancy_frames // 2) / (args.num_redundancy_frames // 2 - 1))).long()
|
|
|
|
print(f"using quantization levels {quant_ids}...")
|
|
|
|
# convert input to torch tensors
|
|
features = torch.from_numpy(features)
|
|
|
|
|
|
# run encoder
|
|
print("running fec encoder...")
|
|
with torch.no_grad():
|
|
|
|
# encoding
|
|
z, states, state_size = model.encode(features)
|
|
|
|
|
|
# decoder on packet chunks
|
|
input_length = args.num_redundancy_frames // 2
|
|
offset = args.num_redundancy_frames - 1
|
|
|
|
packets = []
|
|
packet_sizes = []
|
|
|
|
for i in range(offset, num_frames):
|
|
print(f"processing frame {i - offset}...")
|
|
# quantize / unquantize latent vectors
|
|
zi = torch.clone(z[:, i - 2 * input_length + 2: i + 1 : 2, :])
|
|
zi, rates = model.quantize(zi, quant_ids)
|
|
zi = model.unquantize(zi, quant_ids)
|
|
|
|
features = model.decode(zi, states[:, i : i + 1, :])
|
|
packets.append(features.squeeze(0).numpy())
|
|
packet_size = 8 * int((torch.sum(rates) + 7 + state_size) / 8)
|
|
packet_sizes.append(packet_size)
|
|
|
|
|
|
# write packets
|
|
packet_file = args.output + '.fec' if not args.output.endswith('.fec') else args.output
|
|
write_fec_packets(packet_file, packets, packet_sizes)
|
|
|
|
|
|
print(f"average redundancy rate: {int(round(sum(packet_sizes) / len(packet_sizes) * 50 / 1000))} kbps")
|
|
|
|
# assemble features according to loss file
|
|
if args.lossfile != None:
|
|
num_packets = len(packets)
|
|
loss = np.loadtxt(args.lossfile, dtype='int16')
|
|
fec_out = np.zeros((num_packets * 2, packets[0].shape[-1]), dtype='float32')
|
|
foffset = -2
|
|
ptr = 0
|
|
count = 2
|
|
for i in range(num_packets):
|
|
if (loss[i] == 0) or (i == num_packets - 1):
|
|
|
|
fec_out[ptr:ptr+count,:] = packets[i][foffset:, :]
|
|
|
|
ptr += count
|
|
foffset = -2
|
|
count = 2
|
|
else:
|
|
count += 2
|
|
foffset -= 2
|
|
|
|
fec_out_full = np.zeros((fec_out.shape[0], 36), dtype=np.float32)
|
|
fec_out_full[:, : fec_out.shape[-1]] = fec_out
|
|
|
|
fec_out_full.tofile(packet_file[:-4] + f'_fec.f32')
|
|
|
|
|
|
if args.debug_output:
|
|
import itertools
|
|
|
|
batches = [4]
|
|
offsets = [0, 2 * args.num_redundancy_frames - 4]
|
|
|
|
# sanity checks
|
|
# 1. concatenate features at offset 0
|
|
for batch, offset in itertools.product(batches, offsets):
|
|
|
|
stop = packets[0].shape[1] - offset
|
|
test_features = np.concatenate([packet[stop - batch: stop, :] for packet in packets[::batch//2]], axis=0)
|
|
|
|
test_features_full = np.zeros((test_features.shape[0], nb_features), dtype=np.float32)
|
|
test_features_full[:, :nb_used_features] = test_features[:, :]
|
|
|
|
print(f"writing debug output {packet_file[:-4] + f'_torch_batch{batch}_offset{offset}.f32'}")
|
|
test_features_full.tofile(packet_file[:-4] + f'_torch_batch{batch}_offset{offset}.f32')
|
|
|