mirror of
https://github.com/xiph/opus.git
synced 2025-05-18 01:18:30 +00:00
59 lines
1.9 KiB
Python
59 lines
1.9 KiB
Python
#!/usr/bin/python3
|
|
|
|
import math
|
|
from keras.models import Model
|
|
from keras.layers import Input, LSTM, CuDNNGRU, Dense, Embedding, Reshape, Concatenate, Lambda, Conv1D, Add, Multiply, Bidirectional, MaxPooling1D, Activation
|
|
from keras import backend as K
|
|
from keras.initializers import VarianceScaling
|
|
from mdense import MDense
|
|
import numpy as np
|
|
import h5py
|
|
import sys
|
|
from causalconv import CausalConv
|
|
from gatedconv import GatedConv
|
|
|
|
units=128
|
|
pcm_bits = 8
|
|
pcm_levels = 2**pcm_bits
|
|
nb_used_features = 38
|
|
|
|
|
|
def new_wavenet_model(fftnet=False):
|
|
pcm = Input(shape=(None, 1))
|
|
pitch = Input(shape=(None, 1))
|
|
feat = Input(shape=(None, nb_used_features))
|
|
dec_feat = Input(shape=(None, 32))
|
|
|
|
fconv1 = Conv1D(128, 3, padding='same', activation='tanh')
|
|
fconv2 = Conv1D(32, 3, padding='same', activation='tanh')
|
|
|
|
cfeat = fconv2(fconv1(feat))
|
|
|
|
rep = Lambda(lambda x: K.repeat_elements(x, 160, 1))
|
|
|
|
activation='tanh'
|
|
rfeat = rep(cfeat)
|
|
#tmp = Concatenate()([pcm, rfeat])
|
|
tmp = pcm
|
|
init = VarianceScaling(scale=1.5,mode='fan_avg',distribution='uniform')
|
|
for k in range(10):
|
|
res = tmp
|
|
dilation = 9-k if fftnet else k
|
|
'''#tmp = Concatenate()([tmp, rfeat])
|
|
c = GatedConv(units, 2, dilation_rate=2**dilation, activation='tanh', kernel_initializer=init)
|
|
tmp = Dense(units, activation='relu')(c(tmp, cond=rfeat))'''
|
|
|
|
tmp = Concatenate()([tmp, rfeat])
|
|
c1 = CausalConv(units, 2, dilation_rate=2**dilation, activation='tanh')
|
|
c2 = CausalConv(units, 2, dilation_rate=2**dilation, activation='sigmoid')
|
|
tmp = Multiply()([c1(tmp), c2(tmp)])
|
|
tmp = Dense(units, activation='relu')(tmp)
|
|
|
|
if k != 0:
|
|
tmp = Add()([tmp, res])
|
|
|
|
md = MDense(pcm_levels, activation='softmax')
|
|
ulaw_prob = md(tmp)
|
|
|
|
model = Model([pcm, feat], ulaw_prob)
|
|
return model
|