#!/usr/bin/python3 import math from keras.models import Model from keras.layers import Input, LSTM, CuDNNGRU, Dense, Embedding, Reshape, Concatenate, Lambda, Conv1D, Add, Multiply, Bidirectional, MaxPooling1D, Activation from keras import backend as K from keras.initializers import VarianceScaling from mdense import MDense import numpy as np import h5py import sys from causalconv import CausalConv from gatedconv import GatedConv units=128 pcm_bits = 8 pcm_levels = 2**pcm_bits nb_used_features = 38 def new_wavenet_model(fftnet=False): pcm = Input(shape=(None, 1)) pitch = Input(shape=(None, 1)) feat = Input(shape=(None, nb_used_features)) dec_feat = Input(shape=(None, 32)) fconv1 = Conv1D(128, 3, padding='same', activation='tanh') fconv2 = Conv1D(32, 3, padding='same', activation='tanh') cfeat = fconv2(fconv1(feat)) rep = Lambda(lambda x: K.repeat_elements(x, 160, 1)) activation='tanh' rfeat = rep(cfeat) #tmp = Concatenate()([pcm, rfeat]) tmp = pcm init = VarianceScaling(scale=1.5,mode='fan_avg',distribution='uniform') for k in range(10): res = tmp dilation = 9-k if fftnet else k '''#tmp = Concatenate()([tmp, rfeat]) c = GatedConv(units, 2, dilation_rate=2**dilation, activation='tanh', kernel_initializer=init) tmp = Dense(units, activation='relu')(c(tmp, cond=rfeat))''' tmp = Concatenate()([tmp, rfeat]) c1 = CausalConv(units, 2, dilation_rate=2**dilation, activation='tanh') c2 = CausalConv(units, 2, dilation_rate=2**dilation, activation='sigmoid') tmp = Multiply()([c1(tmp), c2(tmp)]) tmp = Dense(units, activation='relu')(tmp) if k != 0: tmp = Add()([tmp, res]) md = MDense(pcm_levels, activation='softmax') ulaw_prob = md(tmp) model = Model([pcm, feat], ulaw_prob) return model