mirror of
https://github.com/xiph/opus.git
synced 2025-05-19 18:08:29 +00:00
175 lines
6.9 KiB
Python
175 lines
6.9 KiB
Python
#!/usr/bin/python3
|
|
'''Copyright (c) 2018 Mozilla
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions
|
|
are met:
|
|
|
|
- Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
|
|
- Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
|
|
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
'''
|
|
|
|
import math
|
|
from keras.models import Model
|
|
from keras.layers import Input, GRU, CuDNNGRU, Dense, Embedding, Reshape, Concatenate, Lambda, Conv1D, Multiply, Add, Bidirectional, MaxPooling1D, Activation
|
|
from keras import backend as K
|
|
from keras.initializers import Initializer
|
|
from keras.callbacks import Callback
|
|
from mdense import MDense
|
|
import numpy as np
|
|
import h5py
|
|
import sys
|
|
|
|
frame_size = 160
|
|
pcm_bits = 8
|
|
embed_size = 128
|
|
pcm_levels = 2**pcm_bits
|
|
|
|
class Sparsify(Callback):
|
|
def __init__(self, t_start, t_end, interval, density):
|
|
super(Sparsify, self).__init__()
|
|
self.batch = 0
|
|
self.t_start = t_start
|
|
self.t_end = t_end
|
|
self.interval = interval
|
|
self.final_density = density
|
|
|
|
def on_batch_end(self, batch, logs=None):
|
|
#print("batch number", self.batch)
|
|
self.batch += 1
|
|
if self.batch < self.t_start or ((self.batch-self.t_start) % self.interval != 0 and self.batch < self.t_end):
|
|
#print("don't constrain");
|
|
pass
|
|
else:
|
|
#print("constrain");
|
|
layer = self.model.get_layer('gru_a')
|
|
w = layer.get_weights()
|
|
p = w[1]
|
|
nb = p.shape[1]//p.shape[0]
|
|
N = p.shape[0]
|
|
#print("nb = ", nb, ", N = ", N);
|
|
#print(p.shape)
|
|
#print ("density = ", density)
|
|
for k in range(nb):
|
|
density = self.final_density[k]
|
|
if self.batch < self.t_end:
|
|
r = 1 - (self.batch-self.t_start)/(self.t_end - self.t_start)
|
|
density = 1 - (1-self.final_density[k])*(1 - r*r*r)
|
|
A = p[:, k*N:(k+1)*N]
|
|
A = A - np.diag(np.diag(A))
|
|
A = np.transpose(A, (1, 0))
|
|
L=np.reshape(A, (N, N//16, 16))
|
|
S=np.sum(L*L, axis=-1)
|
|
SS=np.sort(np.reshape(S, (-1,)))
|
|
thresh = SS[round(N*N//16*(1-density))]
|
|
mask = (S>=thresh).astype('float32');
|
|
mask = np.repeat(mask, 16, axis=1)
|
|
mask = np.minimum(1, mask + np.diag(np.ones((N,))))
|
|
mask = np.transpose(mask, (1, 0))
|
|
p[:, k*N:(k+1)*N] = p[:, k*N:(k+1)*N]*mask
|
|
#print(thresh, np.mean(mask))
|
|
w[1] = p
|
|
layer.set_weights(w)
|
|
|
|
|
|
class PCMInit(Initializer):
|
|
def __init__(self, gain=.1, seed=None):
|
|
self.gain = gain
|
|
self.seed = seed
|
|
|
|
def __call__(self, shape, dtype=None):
|
|
num_rows = 1
|
|
for dim in shape[:-1]:
|
|
num_rows *= dim
|
|
num_cols = shape[-1]
|
|
flat_shape = (num_rows, num_cols)
|
|
if self.seed is not None:
|
|
np.random.seed(self.seed)
|
|
a = np.random.uniform(-1.7321, 1.7321, flat_shape)
|
|
#a[:,0] = math.sqrt(12)*np.arange(-.5*num_rows+.5,.5*num_rows-.4)/num_rows
|
|
#a[:,1] = .5*a[:,0]*a[:,0]*a[:,0]
|
|
a = a + np.reshape(math.sqrt(12)*np.arange(-.5*num_rows+.5,.5*num_rows-.4)/num_rows, (num_rows, 1))
|
|
return self.gain * a
|
|
|
|
def get_config(self):
|
|
return {
|
|
'gain': self.gain,
|
|
'seed': self.seed
|
|
}
|
|
|
|
def new_lpcnet_model(rnn_units1=384, rnn_units2=16, nb_used_features = 38, training=False, use_gpu=True):
|
|
pcm = Input(shape=(None, 3))
|
|
feat = Input(shape=(None, nb_used_features))
|
|
pitch = Input(shape=(None, 1))
|
|
dec_feat = Input(shape=(None, 128))
|
|
dec_state1 = Input(shape=(rnn_units1,))
|
|
dec_state2 = Input(shape=(rnn_units2,))
|
|
|
|
padding = 'valid' if training else 'same'
|
|
fconv1 = Conv1D(128, 3, padding=padding, activation='tanh', name='feature_conv1')
|
|
fconv2 = Conv1D(128, 3, padding=padding, activation='tanh', name='feature_conv2')
|
|
|
|
embed = Embedding(256, embed_size, embeddings_initializer=PCMInit(), name='embed_sig')
|
|
cpcm = Reshape((-1, embed_size*3))(embed(pcm))
|
|
|
|
pembed = Embedding(256, 64, name='embed_pitch')
|
|
cat_feat = Concatenate()([feat, Reshape((-1, 64))(pembed(pitch))])
|
|
|
|
cfeat = fconv2(fconv1(cat_feat))
|
|
|
|
fdense1 = Dense(128, activation='tanh', name='feature_dense1')
|
|
fdense2 = Dense(128, activation='tanh', name='feature_dense2')
|
|
|
|
cfeat = fdense2(fdense1(cfeat))
|
|
|
|
rep = Lambda(lambda x: K.repeat_elements(x, frame_size, 1))
|
|
|
|
if use_gpu:
|
|
rnn = CuDNNGRU(rnn_units1, return_sequences=True, return_state=True, name='gru_a')
|
|
rnn2 = CuDNNGRU(rnn_units2, return_sequences=True, return_state=True, name='gru_b')
|
|
else:
|
|
rnn = GRU(rnn_units1, return_sequences=True, return_state=True, recurrent_activation="sigmoid", reset_after='true', name='gru_a')
|
|
rnn2 = GRU(rnn_units2, return_sequences=True, return_state=True, recurrent_activation="sigmoid", reset_after='true', name='gru_b')
|
|
|
|
rnn_in = Concatenate()([cpcm, rep(cfeat)])
|
|
md = MDense(pcm_levels, activation='softmax', name='dual_fc')
|
|
gru_out1, _ = rnn(rnn_in)
|
|
gru_out2, _ = rnn2(Concatenate()([gru_out1, rep(cfeat)]))
|
|
ulaw_prob = md(gru_out2)
|
|
|
|
rnn.trainable=False
|
|
rnn2.trainable=False
|
|
md.trainable=False
|
|
embed.Trainable=False
|
|
|
|
model = Model([pcm, feat, pitch], ulaw_prob)
|
|
model.rnn_units1 = rnn_units1
|
|
model.rnn_units2 = rnn_units2
|
|
model.nb_used_features = nb_used_features
|
|
model.frame_size = frame_size
|
|
|
|
encoder = Model([feat, pitch], cfeat)
|
|
|
|
dec_rnn_in = Concatenate()([cpcm, dec_feat])
|
|
dec_gru_out1, state1 = rnn(dec_rnn_in, initial_state=dec_state1)
|
|
dec_gru_out2, state2 = rnn2(Concatenate()([dec_gru_out1, dec_feat]), initial_state=dec_state2)
|
|
dec_ulaw_prob = md(dec_gru_out2)
|
|
|
|
decoder = Model([pcm, dec_feat, dec_state1, dec_state2], [dec_ulaw_prob, state1, state2])
|
|
return model, encoder, decoder
|