#!/usr/bin/python3 '''Copyright (c) 2018 Mozilla Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ''' import math from keras.models import Model from keras.layers import Input, GRU, CuDNNGRU, Dense, Embedding, Reshape, Concatenate, Lambda, Conv1D, Multiply, Add, Bidirectional, MaxPooling1D, Activation from keras import backend as K from keras.initializers import Initializer from keras.callbacks import Callback from mdense import MDense import numpy as np import h5py import sys frame_size = 160 pcm_bits = 8 embed_size = 128 pcm_levels = 2**pcm_bits class Sparsify(Callback): def __init__(self, t_start, t_end, interval, density): super(Sparsify, self).__init__() self.batch = 0 self.t_start = t_start self.t_end = t_end self.interval = interval self.final_density = density def on_batch_end(self, batch, logs=None): #print("batch number", self.batch) self.batch += 1 if self.batch < self.t_start or ((self.batch-self.t_start) % self.interval != 0 and self.batch < self.t_end): #print("don't constrain"); pass else: #print("constrain"); layer = self.model.get_layer('gru_a') w = layer.get_weights() p = w[1] nb = p.shape[1]//p.shape[0] N = p.shape[0] #print("nb = ", nb, ", N = ", N); #print(p.shape) #print ("density = ", density) for k in range(nb): density = self.final_density[k] if self.batch < self.t_end: r = 1 - (self.batch-self.t_start)/(self.t_end - self.t_start) density = 1 - (1-self.final_density[k])*(1 - r*r*r) A = p[:, k*N:(k+1)*N] A = A - np.diag(np.diag(A)) A = np.transpose(A, (1, 0)) L=np.reshape(A, (N, N//16, 16)) S=np.sum(L*L, axis=-1) SS=np.sort(np.reshape(S, (-1,))) thresh = SS[round(N*N//16*(1-density))] mask = (S>=thresh).astype('float32'); mask = np.repeat(mask, 16, axis=1) mask = np.minimum(1, mask + np.diag(np.ones((N,)))) mask = np.transpose(mask, (1, 0)) p[:, k*N:(k+1)*N] = p[:, k*N:(k+1)*N]*mask #print(thresh, np.mean(mask)) w[1] = p layer.set_weights(w) class PCMInit(Initializer): def __init__(self, gain=.1, seed=None): self.gain = gain self.seed = seed def __call__(self, shape, dtype=None): num_rows = 1 for dim in shape[:-1]: num_rows *= dim num_cols = shape[-1] flat_shape = (num_rows, num_cols) if self.seed is not None: np.random.seed(self.seed) a = np.random.uniform(-1.7321, 1.7321, flat_shape) #a[:,0] = math.sqrt(12)*np.arange(-.5*num_rows+.5,.5*num_rows-.4)/num_rows #a[:,1] = .5*a[:,0]*a[:,0]*a[:,0] a = a + np.reshape(math.sqrt(12)*np.arange(-.5*num_rows+.5,.5*num_rows-.4)/num_rows, (num_rows, 1)) return self.gain * a def get_config(self): return { 'gain': self.gain, 'seed': self.seed } def new_lpcnet_model(rnn_units1=384, rnn_units2=16, nb_used_features = 38, training=False, use_gpu=True): pcm = Input(shape=(None, 3)) feat = Input(shape=(None, nb_used_features)) pitch = Input(shape=(None, 1)) dec_feat = Input(shape=(None, 128)) dec_state1 = Input(shape=(rnn_units1,)) dec_state2 = Input(shape=(rnn_units2,)) padding = 'valid' if training else 'same' fconv1 = Conv1D(128, 3, padding=padding, activation='tanh', name='feature_conv1') fconv2 = Conv1D(128, 3, padding=padding, activation='tanh', name='feature_conv2') embed = Embedding(256, embed_size, embeddings_initializer=PCMInit(), name='embed_sig') cpcm = Reshape((-1, embed_size*3))(embed(pcm)) pembed = Embedding(256, 64, name='embed_pitch') cat_feat = Concatenate()([feat, Reshape((-1, 64))(pembed(pitch))]) cfeat = fconv2(fconv1(cat_feat)) fdense1 = Dense(128, activation='tanh', name='feature_dense1') fdense2 = Dense(128, activation='tanh', name='feature_dense2') cfeat = fdense2(fdense1(cfeat)) rep = Lambda(lambda x: K.repeat_elements(x, frame_size, 1)) if use_gpu: rnn = CuDNNGRU(rnn_units1, return_sequences=True, return_state=True, name='gru_a') rnn2 = CuDNNGRU(rnn_units2, return_sequences=True, return_state=True, name='gru_b') else: rnn = GRU(rnn_units1, return_sequences=True, return_state=True, recurrent_activation="sigmoid", reset_after='true', name='gru_a') rnn2 = GRU(rnn_units2, return_sequences=True, return_state=True, recurrent_activation="sigmoid", reset_after='true', name='gru_b') rnn_in = Concatenate()([cpcm, rep(cfeat)]) md = MDense(pcm_levels, activation='softmax', name='dual_fc') gru_out1, _ = rnn(rnn_in) gru_out2, _ = rnn2(Concatenate()([gru_out1, rep(cfeat)])) ulaw_prob = md(gru_out2) rnn.trainable=False rnn2.trainable=False md.trainable=False embed.Trainable=False model = Model([pcm, feat, pitch], ulaw_prob) model.rnn_units1 = rnn_units1 model.rnn_units2 = rnn_units2 model.nb_used_features = nb_used_features model.frame_size = frame_size encoder = Model([feat, pitch], cfeat) dec_rnn_in = Concatenate()([cpcm, dec_feat]) dec_gru_out1, state1 = rnn(dec_rnn_in, initial_state=dec_state1) dec_gru_out2, state2 = rnn2(Concatenate()([dec_gru_out1, dec_feat]), initial_state=dec_state2) dec_ulaw_prob = md(dec_gru_out2) decoder = Model([pcm, dec_feat, dec_state1, dec_state2], [dec_ulaw_prob, state1, state2]) return model, encoder, decoder