opus/dnn/wavenet.py
2018-07-13 17:10:03 -04:00

50 lines
1.4 KiB
Python

#!/usr/bin/python3
import math
from keras.models import Model
from keras.layers import Input, LSTM, CuDNNGRU, Dense, Embedding, Reshape, Concatenate, Lambda, Conv1D, Add, Multiply, Bidirectional, MaxPooling1D, Activation
from keras import backend as K
from mdense import MDense
import numpy as np
import h5py
import sys
from causalconv import CausalConv
from gatedconv import GatedConv
units=128
pcm_bits = 8
pcm_levels = 2**pcm_bits
nb_used_features = 38
def new_wavenet_model(fftnet=False):
pcm = Input(shape=(None, 1))
pitch = Input(shape=(None, 1))
feat = Input(shape=(None, nb_used_features))
dec_feat = Input(shape=(None, 32))
fconv1 = Conv1D(128, 3, padding='same', activation='tanh')
fconv2 = Conv1D(32, 3, padding='same', activation='tanh')
cfeat = fconv2(fconv1(feat))
rep = Lambda(lambda x: K.repeat_elements(x, 160, 1))
activation='tanh'
rfeat = rep(cfeat)
#tmp = Concatenate()([pcm, rfeat])
tmp = pcm
for k in range(10):
res = tmp
tmp = Concatenate()([tmp, rfeat])
dilation = 9-k if fftnet else k
c = GatedConv(units, 2, dilation_rate=2**dilation, activation='tanh')
tmp = Dense(units, activation='relu')(c(tmp))
if k != 0:
tmp = Add()([tmp, res])
md = MDense(pcm_levels, activation='softmax')
ulaw_prob = md(tmp)
model = Model([pcm, feat], ulaw_prob)
return model