Gated convolution

This commit is contained in:
Jean-Marc Valin 2018-07-13 17:10:03 -04:00
parent 0fa7150454
commit 211435f5d3
2 changed files with 66 additions and 5 deletions

62
dnn/gatedconv.py Normal file
View file

@ -0,0 +1,62 @@
from keras import backend as K
from keras.engine.topology import Layer
from keras.layers import activations, initializers, regularizers, constraints, InputSpec, Conv1D
import numpy as np
class GatedConv(Conv1D):
def __init__(self, filters,
kernel_size,
dilation_rate=1,
activation='tanh',
use_bias=True,
kernel_initializer='glorot_uniform',
bias_initializer='zeros',
kernel_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
bias_constraint=None,
return_memory=False,
**kwargs):
super(GatedConv, self).__init__(
filters=2*filters,
kernel_size=kernel_size,
strides=1,
padding='valid',
data_format='channels_last',
dilation_rate=dilation_rate,
activation='linear',
use_bias=use_bias,
kernel_initializer=kernel_initializer,
bias_initializer=bias_initializer,
kernel_regularizer=kernel_regularizer,
bias_regularizer=bias_regularizer,
activity_regularizer=activity_regularizer,
kernel_constraint=kernel_constraint,
bias_constraint=bias_constraint,
**kwargs)
self.mem_size = dilation_rate*(kernel_size-1)
self.return_memory = return_memory
self.out_dims = filters
self.nongate_activation = activations.get(activation)
def call(self, inputs, memory=None):
if memory is None:
mem = K.zeros((K.shape(inputs)[0], self.mem_size, K.shape(inputs)[-1]))
else:
mem = K.variable(K.cast_to_floatx(memory))
inputs = K.concatenate([mem, inputs], axis=1)
ret = super(GatedConv, self).call(inputs)
ret = self.nongate_activation(ret[:, :, :self.out_dims]) * activations.sigmoid(ret[:, :, self.out_dims:])
if self.return_memory:
ret = ret, inputs[:, :self.mem_size, :]
return ret
def compute_output_shape(self, input_shape):
assert input_shape and len(input_shape) >= 2
assert input_shape[-1]
output_shape = list(input_shape)
output_shape[-1] = self.out_dims
return tuple(output_shape)

View file

@ -9,8 +9,9 @@ import numpy as np
import h5py
import sys
from causalconv import CausalConv
from gatedconv import GatedConv
units=256
units=128
pcm_bits = 8
pcm_levels = 2**pcm_bits
nb_used_features = 38
@ -37,10 +38,8 @@ def new_wavenet_model(fftnet=False):
res = tmp
tmp = Concatenate()([tmp, rfeat])
dilation = 9-k if fftnet else k
c1 = CausalConv(units, 2, dilation_rate=2**dilation, activation='tanh')
c2 = CausalConv(units, 2, dilation_rate=2**dilation, activation='sigmoid')
tmp = Multiply()([c1(tmp), c2(tmp)])
tmp = Dense(units, activation='relu')(tmp)
c = GatedConv(units, 2, dilation_rate=2**dilation, activation='tanh')
tmp = Dense(units, activation='relu')(c(tmp))
if k != 0:
tmp = Add()([tmp, res])