mirror of
https://github.com/xiph/opus.git
synced 2025-06-01 08:07:41 +00:00
Gated convolution
This commit is contained in:
parent
0fa7150454
commit
211435f5d3
2 changed files with 66 additions and 5 deletions
62
dnn/gatedconv.py
Normal file
62
dnn/gatedconv.py
Normal file
|
@ -0,0 +1,62 @@
|
|||
from keras import backend as K
|
||||
from keras.engine.topology import Layer
|
||||
from keras.layers import activations, initializers, regularizers, constraints, InputSpec, Conv1D
|
||||
import numpy as np
|
||||
|
||||
class GatedConv(Conv1D):
|
||||
|
||||
def __init__(self, filters,
|
||||
kernel_size,
|
||||
dilation_rate=1,
|
||||
activation='tanh',
|
||||
use_bias=True,
|
||||
kernel_initializer='glorot_uniform',
|
||||
bias_initializer='zeros',
|
||||
kernel_regularizer=None,
|
||||
bias_regularizer=None,
|
||||
activity_regularizer=None,
|
||||
kernel_constraint=None,
|
||||
bias_constraint=None,
|
||||
return_memory=False,
|
||||
**kwargs):
|
||||
|
||||
super(GatedConv, self).__init__(
|
||||
filters=2*filters,
|
||||
kernel_size=kernel_size,
|
||||
strides=1,
|
||||
padding='valid',
|
||||
data_format='channels_last',
|
||||
dilation_rate=dilation_rate,
|
||||
activation='linear',
|
||||
use_bias=use_bias,
|
||||
kernel_initializer=kernel_initializer,
|
||||
bias_initializer=bias_initializer,
|
||||
kernel_regularizer=kernel_regularizer,
|
||||
bias_regularizer=bias_regularizer,
|
||||
activity_regularizer=activity_regularizer,
|
||||
kernel_constraint=kernel_constraint,
|
||||
bias_constraint=bias_constraint,
|
||||
**kwargs)
|
||||
self.mem_size = dilation_rate*(kernel_size-1)
|
||||
self.return_memory = return_memory
|
||||
self.out_dims = filters
|
||||
self.nongate_activation = activations.get(activation)
|
||||
|
||||
def call(self, inputs, memory=None):
|
||||
if memory is None:
|
||||
mem = K.zeros((K.shape(inputs)[0], self.mem_size, K.shape(inputs)[-1]))
|
||||
else:
|
||||
mem = K.variable(K.cast_to_floatx(memory))
|
||||
inputs = K.concatenate([mem, inputs], axis=1)
|
||||
ret = super(GatedConv, self).call(inputs)
|
||||
ret = self.nongate_activation(ret[:, :, :self.out_dims]) * activations.sigmoid(ret[:, :, self.out_dims:])
|
||||
if self.return_memory:
|
||||
ret = ret, inputs[:, :self.mem_size, :]
|
||||
return ret
|
||||
|
||||
def compute_output_shape(self, input_shape):
|
||||
assert input_shape and len(input_shape) >= 2
|
||||
assert input_shape[-1]
|
||||
output_shape = list(input_shape)
|
||||
output_shape[-1] = self.out_dims
|
||||
return tuple(output_shape)
|
|
@ -9,8 +9,9 @@ import numpy as np
|
|||
import h5py
|
||||
import sys
|
||||
from causalconv import CausalConv
|
||||
from gatedconv import GatedConv
|
||||
|
||||
units=256
|
||||
units=128
|
||||
pcm_bits = 8
|
||||
pcm_levels = 2**pcm_bits
|
||||
nb_used_features = 38
|
||||
|
@ -37,10 +38,8 @@ def new_wavenet_model(fftnet=False):
|
|||
res = tmp
|
||||
tmp = Concatenate()([tmp, rfeat])
|
||||
dilation = 9-k if fftnet else k
|
||||
c1 = CausalConv(units, 2, dilation_rate=2**dilation, activation='tanh')
|
||||
c2 = CausalConv(units, 2, dilation_rate=2**dilation, activation='sigmoid')
|
||||
tmp = Multiply()([c1(tmp), c2(tmp)])
|
||||
tmp = Dense(units, activation='relu')(tmp)
|
||||
c = GatedConv(units, 2, dilation_rate=2**dilation, activation='tanh')
|
||||
tmp = Dense(units, activation='relu')(c(tmp))
|
||||
if k != 0:
|
||||
tmp = Add()([tmp, res])
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue