mirror of
https://github.com/xiph/opus.git
synced 2025-05-15 16:08:30 +00:00
272 lines
9.1 KiB
Python
272 lines
9.1 KiB
Python
"""
|
|
/* Copyright (c) 2023 Amazon
|
|
Written by Jan Buethe */
|
|
/*
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions
|
|
are met:
|
|
|
|
- Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
|
|
- Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
|
|
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
"""
|
|
|
|
import os
|
|
import argparse
|
|
import sys
|
|
|
|
try:
|
|
import git
|
|
has_git = True
|
|
except:
|
|
has_git = False
|
|
|
|
import yaml
|
|
|
|
|
|
import torch
|
|
from torch.optim.lr_scheduler import LambdaLR
|
|
|
|
from data import LPCNetDataset
|
|
from models import model_dict
|
|
from engine.lpcnet_engine import train_one_epoch, evaluate
|
|
from utils.data import load_features
|
|
from utils.wav import wavwrite16
|
|
|
|
|
|
debug = False
|
|
if debug:
|
|
args = type('dummy', (object,),
|
|
{
|
|
'setup' : 'setup.yml',
|
|
'output' : 'testout',
|
|
'device' : None,
|
|
'test_features' : None,
|
|
'finalize': False,
|
|
'initial_checkpoint': None,
|
|
'no-redirect': False
|
|
})()
|
|
else:
|
|
parser = argparse.ArgumentParser("train_lpcnet.py")
|
|
parser.add_argument('setup', type=str, help='setup yaml file')
|
|
parser.add_argument('output', type=str, help='output path')
|
|
parser.add_argument('--device', type=str, help='compute device', default=None)
|
|
parser.add_argument('--test-features', type=str, help='test feature file in v2 format', default=None)
|
|
parser.add_argument('--finalize', action='store_true', help='run single training round with lr=1e-5')
|
|
parser.add_argument('--initial-checkpoint', type=str, help='initial checkpoint', default=None)
|
|
parser.add_argument('--no-redirect', action='store_true', help='disables re-direction of output')
|
|
|
|
args = parser.parse_args()
|
|
|
|
|
|
torch.set_num_threads(4)
|
|
|
|
with open(args.setup, 'r') as f:
|
|
setup = yaml.load(f.read(), yaml.FullLoader)
|
|
|
|
if args.finalize:
|
|
if args.initial_checkpoint is None:
|
|
raise ValueError('finalization requires initial checkpoint')
|
|
|
|
if 'sparsification' in setup['lpcnet']['config']:
|
|
for sp_job in setup['lpcnet']['config']['sparsification'].values():
|
|
sp_job['start'], sp_job['stop'] = 0, 0
|
|
|
|
setup['training']['lr'] = 1.0e-5
|
|
setup['training']['lr_decay_factor'] = 0.0
|
|
setup['training']['epochs'] = 1
|
|
|
|
checkpoint_prefix = 'checkpoint_finalize'
|
|
output_prefix = 'output_finalize'
|
|
setup_name = 'setup_finalize.yml'
|
|
output_file='out_finalize.txt'
|
|
else:
|
|
checkpoint_prefix = 'checkpoint'
|
|
output_prefix = 'output'
|
|
setup_name = 'setup.yml'
|
|
output_file='out.txt'
|
|
|
|
|
|
# check model
|
|
if not 'model' in setup['lpcnet']:
|
|
print(f'warning: did not find model entry in setup, using default lpcnet')
|
|
model_name = 'lpcnet'
|
|
else:
|
|
model_name = setup['lpcnet']['model']
|
|
|
|
# prepare output folder
|
|
if os.path.exists(args.output) and not debug and not args.finalize:
|
|
print("warning: output folder exists")
|
|
|
|
reply = input('continue? (y/n): ')
|
|
while reply not in {'y', 'n'}:
|
|
reply = input('continue? (y/n): ')
|
|
|
|
if reply == 'n':
|
|
os._exit()
|
|
else:
|
|
os.makedirs(args.output, exist_ok=True)
|
|
|
|
checkpoint_dir = os.path.join(args.output, 'checkpoints')
|
|
os.makedirs(checkpoint_dir, exist_ok=True)
|
|
|
|
|
|
# add repo info to setup
|
|
if has_git:
|
|
working_dir = os.path.split(__file__)[0]
|
|
try:
|
|
repo = git.Repo(working_dir)
|
|
setup['repo'] = dict()
|
|
hash = repo.head.object.hexsha
|
|
urls = list(repo.remote().urls)
|
|
is_dirty = repo.is_dirty()
|
|
|
|
if is_dirty:
|
|
print("warning: repo is dirty")
|
|
|
|
setup['repo']['hash'] = hash
|
|
setup['repo']['urls'] = urls
|
|
setup['repo']['dirty'] = is_dirty
|
|
except:
|
|
has_git = False
|
|
|
|
# dump setup
|
|
with open(os.path.join(args.output, setup_name), 'w') as f:
|
|
yaml.dump(setup, f)
|
|
|
|
# prepare inference test if wanted
|
|
run_inference_test = False
|
|
if type(args.test_features) != type(None):
|
|
test_features = load_features(args.test_features)
|
|
inference_test_dir = os.path.join(args.output, 'inference_test')
|
|
os.makedirs(inference_test_dir, exist_ok=True)
|
|
run_inference_test = True
|
|
|
|
# training parameters
|
|
batch_size = setup['training']['batch_size']
|
|
epochs = setup['training']['epochs']
|
|
lr = setup['training']['lr']
|
|
lr_decay_factor = setup['training']['lr_decay_factor']
|
|
|
|
# load training dataset
|
|
lpcnet_config = setup['lpcnet']['config']
|
|
data = LPCNetDataset( setup['dataset'],
|
|
features=lpcnet_config['features'],
|
|
input_signals=lpcnet_config['signals'],
|
|
target=lpcnet_config['target'],
|
|
frames_per_sample=setup['training']['frames_per_sample'],
|
|
feature_history=lpcnet_config['feature_history'],
|
|
feature_lookahead=lpcnet_config['feature_lookahead'],
|
|
lpc_gamma=lpcnet_config.get('lpc_gamma', 1))
|
|
|
|
# load validation dataset if given
|
|
if 'validation_dataset' in setup:
|
|
validation_data = LPCNetDataset( setup['validation_dataset'],
|
|
features=lpcnet_config['features'],
|
|
input_signals=lpcnet_config['signals'],
|
|
target=lpcnet_config['target'],
|
|
frames_per_sample=setup['training']['frames_per_sample'],
|
|
feature_history=lpcnet_config['feature_history'],
|
|
feature_lookahead=lpcnet_config['feature_lookahead'],
|
|
lpc_gamma=lpcnet_config.get('lpc_gamma', 1))
|
|
|
|
validation_dataloader = torch.utils.data.DataLoader(validation_data, batch_size=batch_size, drop_last=True, num_workers=4)
|
|
|
|
run_validation = True
|
|
else:
|
|
run_validation = False
|
|
|
|
# create model
|
|
model = model_dict[model_name](setup['lpcnet']['config'])
|
|
|
|
if args.initial_checkpoint is not None:
|
|
print(f"loading state dict from {args.initial_checkpoint}...")
|
|
chkpt = torch.load(args.initial_checkpoint, map_location='cpu')
|
|
model.load_state_dict(chkpt['state_dict'])
|
|
|
|
# set compute device
|
|
if type(args.device) == type(None):
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
else:
|
|
device = torch.device(args.device)
|
|
|
|
# push model to device
|
|
model.to(device)
|
|
|
|
# dataloader
|
|
dataloader = torch.utils.data.DataLoader(data, batch_size=batch_size, drop_last=True, shuffle=True, num_workers=4)
|
|
|
|
# optimizer is introduced to trainable parameters
|
|
parameters = [p for p in model.parameters() if p.requires_grad]
|
|
optimizer = torch.optim.Adam(parameters, lr=lr)
|
|
|
|
# learning rate scheduler
|
|
scheduler = LambdaLR(optimizer=optimizer, lr_lambda=lambda x : 1 / (1 + lr_decay_factor * x))
|
|
|
|
# loss
|
|
criterion = torch.nn.NLLLoss()
|
|
|
|
# model checkpoint
|
|
checkpoint = {
|
|
'setup' : setup,
|
|
'state_dict' : model.state_dict(),
|
|
'loss' : -1
|
|
}
|
|
|
|
if not args.no_redirect:
|
|
print(f"re-directing output to {os.path.join(args.output, output_file)}")
|
|
sys.stdout = open(os.path.join(args.output, output_file), "w")
|
|
|
|
best_loss = 1e9
|
|
|
|
for ep in range(1, epochs + 1):
|
|
print(f"training epoch {ep}...")
|
|
new_loss = train_one_epoch(model, criterion, optimizer, dataloader, device, scheduler)
|
|
|
|
|
|
# save checkpoint
|
|
checkpoint['state_dict'] = model.state_dict()
|
|
checkpoint['loss'] = new_loss
|
|
|
|
if run_validation:
|
|
print("running validation...")
|
|
validation_loss = evaluate(model, criterion, validation_dataloader, device)
|
|
checkpoint['validation_loss'] = validation_loss
|
|
|
|
if validation_loss < best_loss:
|
|
torch.save(checkpoint, os.path.join(checkpoint_dir, checkpoint_prefix + f'_best.pth'))
|
|
best_loss = validation_loss
|
|
|
|
torch.save(checkpoint, os.path.join(checkpoint_dir, checkpoint_prefix + f'_epoch_{ep}.pth'))
|
|
torch.save(checkpoint, os.path.join(checkpoint_dir, checkpoint_prefix + f'_last.pth'))
|
|
|
|
# run inference test
|
|
if run_inference_test:
|
|
model.to("cpu")
|
|
print("running inference test...")
|
|
|
|
output = model.generate(test_features['features'], test_features['periods'], test_features['lpcs'])
|
|
|
|
testfilename = os.path.join(inference_test_dir, output_prefix + f'_epoch_{ep}.wav')
|
|
|
|
wavwrite16(testfilename, output.numpy(), 16000)
|
|
|
|
model.to(device)
|
|
|
|
print()
|