mirror of
https://github.com/xiph/opus.git
synced 2025-05-15 16:08:30 +00:00
|
||
---|---|---|
.. | ||
data | ||
engine | ||
models | ||
scripts | ||
utils | ||
add_dataset_config.py | ||
make_default_setup.py | ||
make_test_config.py | ||
print_lpcnet_complexity.py | ||
README.md | ||
test_lpcnet.py | ||
train_lpcnet.py |
LPCNet
Incomplete pytorch implementation of LPCNet
Data preparation
For data preparation use dump_data in github.com/xiph/LPCNet. To turn this into a training dataset, copy data and feature file to a folder and run
python add_dataset_config.py my_dataset_folder
Training
To train a model, create and adjust a setup file, e.g. with
python make_default_setup.py my_setup.yml --path2dataset my_dataset_folder
Then simply run
python train_lpcnet.py my_setup.yml my_output
Inference
Create feature file with dump_data from github.com/xiph/LPCNet. Then run e.g.
python test_lpcnet.py features.f32 my_output/checkpoints/checkpoint_ep_10.pth out.wav
Inference runs on CPU and takes usually between 3 and 20 seconds per generated second of audio, depending on the CPU.