mirror of
https://github.com/xiph/opus.git
synced 2025-05-30 15:17:42 +00:00
first attempt of C implementation of fec encoder (not tested yet due to NEON/DOT_PROD not being separable)
This commit is contained in:
parent
9629ea6a70
commit
c1b357ed47
8 changed files with 417 additions and 2 deletions
123
dnn/training_tf2/dump_nfec_model.py
Normal file
123
dnn/training_tf2/dump_nfec_model.py
Normal file
|
@ -0,0 +1,123 @@
|
|||
import argparse
|
||||
import os
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
parser.add_argument('weights', metavar="<weight file>", type=str, help='model weight file in hdf5 format')
|
||||
parser.add_argument('--cond-size', type=int, help="conditioning size (default: 256)", default=256)
|
||||
parser.add_argument('--latent-dim', type=int, help="dimension of latent space (default: 80)", default=80)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
# now import the heavy stuff
|
||||
from keraslayerdump import dump_conv1d_layer, dump_dense_layer, dump_gru_layer
|
||||
from rdovae import new_rdovae_model
|
||||
|
||||
def start_header(header_fid, header_name):
|
||||
header_guard = "_" + os.path.basename(header_name)[:-2].upper() + "_H"
|
||||
header_fid.write(
|
||||
f"""
|
||||
#ifndef {header_guard}
|
||||
#define {header_guard}
|
||||
|
||||
#include "nnet.h"
|
||||
|
||||
"""
|
||||
)
|
||||
|
||||
def finish_header(header_fid):
|
||||
header_fid.write(
|
||||
"""
|
||||
#endif
|
||||
|
||||
"""
|
||||
)
|
||||
|
||||
def start_source(source_fid, header_name, weight_file):
|
||||
source_fid.write(
|
||||
f"""
|
||||
/* this source file was automatically generated from weight file {weight_file} */
|
||||
|
||||
#include "{header_name}"
|
||||
|
||||
"""
|
||||
)
|
||||
|
||||
def finish_source(source_fid):
|
||||
pass
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
model, encoder, decoder, qembedding = new_rdovae_model(20, args.latent_dim, cond_size=args.cond_size)
|
||||
model.load_weights(args.weights)
|
||||
|
||||
|
||||
# for the time being only dump encoder
|
||||
encoder_dense_names = [
|
||||
'enc_dense1',
|
||||
'enc_dense3',
|
||||
'enc_dense5',
|
||||
'enc_dense7',
|
||||
'enc_dense8',
|
||||
'gdense1',
|
||||
'gdense2'
|
||||
]
|
||||
|
||||
encoder_gru_names = [
|
||||
'enc_dense2',
|
||||
'enc_dense4',
|
||||
'enc_dense6'
|
||||
]
|
||||
|
||||
encoder_conv1d_names = [
|
||||
'bits_dense'
|
||||
]
|
||||
|
||||
source_fid = open("nfec_enc_data.c", 'w')
|
||||
header_fid = open("nfec_enc_data.h", 'w')
|
||||
|
||||
start_header(header_fid, "nfec_enc_data.h")
|
||||
start_source(source_fid, "nfec_enc_data.h", os.path.basename(args.weights))
|
||||
|
||||
# dump GRUs
|
||||
max_rnn_neurons = max(
|
||||
[
|
||||
dump_gru_layer(encoder.get_layer(name), source_fid, header_fid)
|
||||
for name in encoder_gru_names
|
||||
]
|
||||
)
|
||||
|
||||
# dump conv layers
|
||||
max_conv_inputs = max(
|
||||
[
|
||||
dump_conv1d_layer(encoder.get_layer(name), source_fid, header_fid)
|
||||
for name in encoder_conv1d_names
|
||||
]
|
||||
)
|
||||
|
||||
# dump Dense layers
|
||||
for name in encoder_dense_names:
|
||||
layer = encoder.get_layer(name)
|
||||
dump_dense_layer(layer, source_fid, header_fid)
|
||||
|
||||
# some global constants
|
||||
header_fid.write(
|
||||
f"""
|
||||
#define NFEC_NUM_FEATURES 20
|
||||
|
||||
#define NFEC_LATENT_DIM {args.latent_dim}
|
||||
|
||||
#define NFEC_ENC_MAX_RNN_NEURONS {max_rnn_neurons}
|
||||
|
||||
#define NFEC_ENC_MAX_CONV_INPUTS {max_conv_inputs}
|
||||
|
||||
"""
|
||||
)
|
||||
|
||||
finish_header(header_fid)
|
||||
finish_source(source_fid)
|
||||
|
||||
header_fid.close()
|
||||
source_fid.close()
|
||||
|
Loading…
Add table
Add a link
Reference in a new issue