opus/dnn/training_tf2/dump_nfec_model.py

123 lines
2.7 KiB
Python

import argparse
import os
parser = argparse.ArgumentParser()
parser.add_argument('weights', metavar="<weight file>", type=str, help='model weight file in hdf5 format')
parser.add_argument('--cond-size', type=int, help="conditioning size (default: 256)", default=256)
parser.add_argument('--latent-dim', type=int, help="dimension of latent space (default: 80)", default=80)
args = parser.parse_args()
# now import the heavy stuff
from keraslayerdump import dump_conv1d_layer, dump_dense_layer, dump_gru_layer
from rdovae import new_rdovae_model
def start_header(header_fid, header_name):
header_guard = "_" + os.path.basename(header_name)[:-2].upper() + "_H"
header_fid.write(
f"""
#ifndef {header_guard}
#define {header_guard}
#include "nnet.h"
"""
)
def finish_header(header_fid):
header_fid.write(
"""
#endif
"""
)
def start_source(source_fid, header_name, weight_file):
source_fid.write(
f"""
/* this source file was automatically generated from weight file {weight_file} */
#include "{header_name}"
"""
)
def finish_source(source_fid):
pass
if __name__ == "__main__":
model, encoder, decoder, qembedding = new_rdovae_model(20, args.latent_dim, cond_size=args.cond_size)
model.load_weights(args.weights)
# for the time being only dump encoder
encoder_dense_names = [
'enc_dense1',
'enc_dense3',
'enc_dense5',
'enc_dense7',
'enc_dense8',
'gdense1',
'gdense2'
]
encoder_gru_names = [
'enc_dense2',
'enc_dense4',
'enc_dense6'
]
encoder_conv1d_names = [
'bits_dense'
]
source_fid = open("nfec_enc_data.c", 'w')
header_fid = open("nfec_enc_data.h", 'w')
start_header(header_fid, "nfec_enc_data.h")
start_source(source_fid, "nfec_enc_data.h", os.path.basename(args.weights))
# dump GRUs
max_rnn_neurons = max(
[
dump_gru_layer(encoder.get_layer(name), source_fid, header_fid)
for name in encoder_gru_names
]
)
# dump conv layers
max_conv_inputs = max(
[
dump_conv1d_layer(encoder.get_layer(name), source_fid, header_fid)
for name in encoder_conv1d_names
]
)
# dump Dense layers
for name in encoder_dense_names:
layer = encoder.get_layer(name)
dump_dense_layer(layer, source_fid, header_fid)
# some global constants
header_fid.write(
f"""
#define NFEC_NUM_FEATURES 20
#define NFEC_LATENT_DIM {args.latent_dim}
#define NFEC_ENC_MAX_RNN_NEURONS {max_rnn_neurons}
#define NFEC_ENC_MAX_CONV_INPUTS {max_conv_inputs}
"""
)
finish_header(header_fid)
finish_source(source_fid)
header_fid.close()
source_fid.close()