mirror of
https://github.com/xiph/opus.git
synced 2025-05-31 23:57:42 +00:00
Sampling directly from the logit
Avoids having to compute a sigmoid
This commit is contained in:
parent
e8f70128d5
commit
7d8b00f11d
4 changed files with 21 additions and 7 deletions
11
dnn/lpcnet.c
11
dnn/lpcnet.c
|
@ -77,7 +77,7 @@ void run_frame_network(LPCNetState *lpcnet, float *condition, float *gru_a_condi
|
||||||
if (lpcnet->frame_count < 1000) lpcnet->frame_count++;
|
if (lpcnet->frame_count < 1000) lpcnet->frame_count++;
|
||||||
}
|
}
|
||||||
|
|
||||||
int run_sample_network(NNetState *net, const float *condition, const float *gru_a_condition, int last_exc, int last_sig, int pred)
|
int run_sample_network(NNetState *net, const float *condition, const float *gru_a_condition, int last_exc, int last_sig, int pred, const float *sampling_logit_table)
|
||||||
{
|
{
|
||||||
float gru_a_input[3*GRU_A_STATE_SIZE];
|
float gru_a_input[3*GRU_A_STATE_SIZE];
|
||||||
float in_b[GRU_A_STATE_SIZE+FEATURE_DENSE2_OUT_SIZE];
|
float in_b[GRU_A_STATE_SIZE+FEATURE_DENSE2_OUT_SIZE];
|
||||||
|
@ -94,7 +94,7 @@ int run_sample_network(NNetState *net, const float *condition, const float *gru_
|
||||||
RNN_COPY(in_b, net->gru_a_state, GRU_A_STATE_SIZE);
|
RNN_COPY(in_b, net->gru_a_state, GRU_A_STATE_SIZE);
|
||||||
RNN_COPY(&in_b[GRU_A_STATE_SIZE], condition, FEATURE_DENSE2_OUT_SIZE);
|
RNN_COPY(&in_b[GRU_A_STATE_SIZE], condition, FEATURE_DENSE2_OUT_SIZE);
|
||||||
compute_gru2(&gru_b, net->gru_b_state, in_b);
|
compute_gru2(&gru_b, net->gru_b_state, in_b);
|
||||||
return sample_mdense(&dual_fc, net->gru_b_state);
|
return sample_mdense(&dual_fc, net->gru_b_state, sampling_logit_table);
|
||||||
}
|
}
|
||||||
|
|
||||||
LPCNET_EXPORT int lpcnet_get_size()
|
LPCNET_EXPORT int lpcnet_get_size()
|
||||||
|
@ -104,8 +104,13 @@ LPCNET_EXPORT int lpcnet_get_size()
|
||||||
|
|
||||||
LPCNET_EXPORT int lpcnet_init(LPCNetState *lpcnet)
|
LPCNET_EXPORT int lpcnet_init(LPCNetState *lpcnet)
|
||||||
{
|
{
|
||||||
|
int i;
|
||||||
memset(lpcnet, 0, lpcnet_get_size());
|
memset(lpcnet, 0, lpcnet_get_size());
|
||||||
lpcnet->last_exc = lin2ulaw(0.f);
|
lpcnet->last_exc = lin2ulaw(0.f);
|
||||||
|
for (i=0;i<256;i++) {
|
||||||
|
float prob = .025+.95*i/255.;
|
||||||
|
lpcnet->sampling_logit_table[i] = -log((1-prob)/prob);
|
||||||
|
}
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -155,7 +160,7 @@ LPCNET_EXPORT void lpcnet_synthesize(LPCNetState *lpcnet, const float *features,
|
||||||
for (j=0;j<LPC_ORDER;j++) pred -= lpcnet->last_sig[j]*lpc[j];
|
for (j=0;j<LPC_ORDER;j++) pred -= lpcnet->last_sig[j]*lpc[j];
|
||||||
last_sig_ulaw = lin2ulaw(lpcnet->last_sig[0]);
|
last_sig_ulaw = lin2ulaw(lpcnet->last_sig[0]);
|
||||||
pred_ulaw = lin2ulaw(pred);
|
pred_ulaw = lin2ulaw(pred);
|
||||||
exc = run_sample_network(&lpcnet->nnet, condition, gru_a_condition, lpcnet->last_exc, last_sig_ulaw, pred_ulaw);
|
exc = run_sample_network(&lpcnet->nnet, condition, gru_a_condition, lpcnet->last_exc, last_sig_ulaw, pred_ulaw, lpcnet->sampling_logit_table);
|
||||||
pcm = pred + ulaw2lin(exc);
|
pcm = pred + ulaw2lin(exc);
|
||||||
RNN_MOVE(&lpcnet->last_sig[1], &lpcnet->last_sig[0], LPC_ORDER-1);
|
RNN_MOVE(&lpcnet->last_sig[1], &lpcnet->last_sig[0], LPC_ORDER-1);
|
||||||
lpcnet->last_sig[0] = pcm;
|
lpcnet->last_sig[0] = pcm;
|
||||||
|
|
|
@ -29,6 +29,7 @@ struct LPCNetState {
|
||||||
float old_input[FEATURES_DELAY][FEATURE_CONV2_OUT_SIZE];
|
float old_input[FEATURES_DELAY][FEATURE_CONV2_OUT_SIZE];
|
||||||
float old_lpc[FEATURES_DELAY][LPC_ORDER];
|
float old_lpc[FEATURES_DELAY][LPC_ORDER];
|
||||||
float old_gain[FEATURES_DELAY];
|
float old_gain[FEATURES_DELAY];
|
||||||
|
float sampling_logit_table[256];
|
||||||
int frame_count;
|
int frame_count;
|
||||||
float deemph_mem;
|
float deemph_mem;
|
||||||
};
|
};
|
||||||
|
|
14
dnn/nnet.c
14
dnn/nnet.c
|
@ -141,7 +141,7 @@ void compute_mdense(const MDenseLayer *layer, float *output, const float *input)
|
||||||
compute_activation(output, output, N, layer->activation);
|
compute_activation(output, output, N, layer->activation);
|
||||||
}
|
}
|
||||||
|
|
||||||
int sample_mdense(const MDenseLayer *layer, const float *input)
|
int sample_mdense(const MDenseLayer *layer, const float *input, const float *sampling_logit_table)
|
||||||
{
|
{
|
||||||
int b, j, N, M, C, stride;
|
int b, j, N, M, C, stride;
|
||||||
M = layer->nb_inputs;
|
M = layer->nb_inputs;
|
||||||
|
@ -152,7 +152,12 @@ int sample_mdense(const MDenseLayer *layer, const float *input)
|
||||||
|
|
||||||
celt_assert(N <= DUAL_FC_OUT_SIZE);
|
celt_assert(N <= DUAL_FC_OUT_SIZE);
|
||||||
int val=0;
|
int val=0;
|
||||||
|
float thresholds[8];
|
||||||
|
|
||||||
|
/* Computing all the random thresholds in advance. These thresholds are directly
|
||||||
|
based on the logit to avoid computing the sigmoid.*/
|
||||||
|
for (b=0;b<8;b++) thresholds[b] = sampling_logit_table[rand()&0xFF];
|
||||||
|
|
||||||
for (b=0;b<8;b++)
|
for (b=0;b<8;b++)
|
||||||
{
|
{
|
||||||
int bit;
|
int bit;
|
||||||
|
@ -171,9 +176,12 @@ int sample_mdense(const MDenseLayer *layer, const float *input)
|
||||||
sum2 = layer->factor[N + i]*tanh_approx(sum2);
|
sum2 = layer->factor[N + i]*tanh_approx(sum2);
|
||||||
sum1 += sum2;
|
sum1 += sum2;
|
||||||
//sum1 = 1.f/(1 + exp(-sum1));
|
//sum1 = 1.f/(1 + exp(-sum1));
|
||||||
|
#if 1 /* Sample the decision based on the logit. */
|
||||||
|
bit = thresholds[b] < sum1;
|
||||||
|
#else
|
||||||
sum1 = sigmoid_approx(sum1);
|
sum1 = sigmoid_approx(sum1);
|
||||||
|
|
||||||
bit = .025+.95*((rand()+.5f)/(RAND_MAX+1.f)) < sum1;
|
bit = .025+.95*((rand()+.5f)/(RAND_MAX+1.f)) < sum1;
|
||||||
|
#endif
|
||||||
val = (val << 1) | bit;
|
val = (val << 1) | bit;
|
||||||
}
|
}
|
||||||
return val;
|
return val;
|
||||||
|
|
|
@ -97,7 +97,7 @@ void compute_dense(const DenseLayer *layer, float *output, const float *input);
|
||||||
|
|
||||||
void compute_mdense(const MDenseLayer *layer, float *output, const float *input);
|
void compute_mdense(const MDenseLayer *layer, float *output, const float *input);
|
||||||
|
|
||||||
int sample_mdense(const MDenseLayer *layer, const float *input);
|
int sample_mdense(const MDenseLayer *layer, const float *input, const float *sampling_logit_table);
|
||||||
|
|
||||||
void compute_gru(const GRULayer *gru, float *state, const float *input);
|
void compute_gru(const GRULayer *gru, float *state, const float *input);
|
||||||
|
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue