diff --git a/dnn/lpcnet.c b/dnn/lpcnet.c index de5275fd..a59cfbca 100644 --- a/dnn/lpcnet.c +++ b/dnn/lpcnet.c @@ -77,7 +77,7 @@ void run_frame_network(LPCNetState *lpcnet, float *condition, float *gru_a_condi if (lpcnet->frame_count < 1000) lpcnet->frame_count++; } -int run_sample_network(NNetState *net, const float *condition, const float *gru_a_condition, int last_exc, int last_sig, int pred) +int run_sample_network(NNetState *net, const float *condition, const float *gru_a_condition, int last_exc, int last_sig, int pred, const float *sampling_logit_table) { float gru_a_input[3*GRU_A_STATE_SIZE]; float in_b[GRU_A_STATE_SIZE+FEATURE_DENSE2_OUT_SIZE]; @@ -94,7 +94,7 @@ int run_sample_network(NNetState *net, const float *condition, const float *gru_ RNN_COPY(in_b, net->gru_a_state, GRU_A_STATE_SIZE); RNN_COPY(&in_b[GRU_A_STATE_SIZE], condition, FEATURE_DENSE2_OUT_SIZE); compute_gru2(&gru_b, net->gru_b_state, in_b); - return sample_mdense(&dual_fc, net->gru_b_state); + return sample_mdense(&dual_fc, net->gru_b_state, sampling_logit_table); } LPCNET_EXPORT int lpcnet_get_size() @@ -104,8 +104,13 @@ LPCNET_EXPORT int lpcnet_get_size() LPCNET_EXPORT int lpcnet_init(LPCNetState *lpcnet) { + int i; memset(lpcnet, 0, lpcnet_get_size()); lpcnet->last_exc = lin2ulaw(0.f); + for (i=0;i<256;i++) { + float prob = .025+.95*i/255.; + lpcnet->sampling_logit_table[i] = -log((1-prob)/prob); + } return 0; } @@ -155,7 +160,7 @@ LPCNET_EXPORT void lpcnet_synthesize(LPCNetState *lpcnet, const float *features, for (j=0;jlast_sig[j]*lpc[j]; last_sig_ulaw = lin2ulaw(lpcnet->last_sig[0]); pred_ulaw = lin2ulaw(pred); - exc = run_sample_network(&lpcnet->nnet, condition, gru_a_condition, lpcnet->last_exc, last_sig_ulaw, pred_ulaw); + exc = run_sample_network(&lpcnet->nnet, condition, gru_a_condition, lpcnet->last_exc, last_sig_ulaw, pred_ulaw, lpcnet->sampling_logit_table); pcm = pred + ulaw2lin(exc); RNN_MOVE(&lpcnet->last_sig[1], &lpcnet->last_sig[0], LPC_ORDER-1); lpcnet->last_sig[0] = pcm; diff --git a/dnn/lpcnet_private.h b/dnn/lpcnet_private.h index 090b2c21..fedcd58e 100644 --- a/dnn/lpcnet_private.h +++ b/dnn/lpcnet_private.h @@ -29,6 +29,7 @@ struct LPCNetState { float old_input[FEATURES_DELAY][FEATURE_CONV2_OUT_SIZE]; float old_lpc[FEATURES_DELAY][LPC_ORDER]; float old_gain[FEATURES_DELAY]; + float sampling_logit_table[256]; int frame_count; float deemph_mem; }; diff --git a/dnn/nnet.c b/dnn/nnet.c index cf8f39cd..9cd0d13f 100644 --- a/dnn/nnet.c +++ b/dnn/nnet.c @@ -141,7 +141,7 @@ void compute_mdense(const MDenseLayer *layer, float *output, const float *input) compute_activation(output, output, N, layer->activation); } -int sample_mdense(const MDenseLayer *layer, const float *input) +int sample_mdense(const MDenseLayer *layer, const float *input, const float *sampling_logit_table) { int b, j, N, M, C, stride; M = layer->nb_inputs; @@ -152,7 +152,12 @@ int sample_mdense(const MDenseLayer *layer, const float *input) celt_assert(N <= DUAL_FC_OUT_SIZE); int val=0; - + float thresholds[8]; + + /* Computing all the random thresholds in advance. These thresholds are directly + based on the logit to avoid computing the sigmoid.*/ + for (b=0;b<8;b++) thresholds[b] = sampling_logit_table[rand()&0xFF]; + for (b=0;b<8;b++) { int bit; @@ -171,9 +176,12 @@ int sample_mdense(const MDenseLayer *layer, const float *input) sum2 = layer->factor[N + i]*tanh_approx(sum2); sum1 += sum2; //sum1 = 1.f/(1 + exp(-sum1)); +#if 1 /* Sample the decision based on the logit. */ + bit = thresholds[b] < sum1; +#else sum1 = sigmoid_approx(sum1); - bit = .025+.95*((rand()+.5f)/(RAND_MAX+1.f)) < sum1; +#endif val = (val << 1) | bit; } return val; diff --git a/dnn/nnet.h b/dnn/nnet.h index 8e975a88..12648cbb 100644 --- a/dnn/nnet.h +++ b/dnn/nnet.h @@ -97,7 +97,7 @@ void compute_dense(const DenseLayer *layer, float *output, const float *input); void compute_mdense(const MDenseLayer *layer, float *output, const float *input); -int sample_mdense(const MDenseLayer *layer, const float *input); +int sample_mdense(const MDenseLayer *layer, const float *input, const float *sampling_logit_table); void compute_gru(const GRULayer *gru, float *state, const float *input);