added LPCNet torch implementation

Signed-off-by: Jan Buethe <jbuethe@amazon.de>
This commit is contained in:
Jan Buethe 2023-09-05 12:29:38 +02:00
parent 90a171c1c2
commit 35ee397e06
No known key found for this signature in database
GPG key ID: 9E32027A35B36314
38 changed files with 3200 additions and 0 deletions

View file

@ -0,0 +1,205 @@
""" module for inspecting models during inference """
import os
import yaml
import matplotlib.pyplot as plt
import matplotlib.animation as animation
import torch
import numpy as np
# stores entries {key : {'fid' : fid, 'fs' : fs, 'dim' : dim, 'dtype' : dtype}}
_state = dict()
_folder = 'endoscopy'
def get_gru_gates(gru, input, state):
hidden_size = gru.hidden_size
direct = torch.matmul(gru.weight_ih_l0, input.squeeze())
recurrent = torch.matmul(gru.weight_hh_l0, state.squeeze())
# reset gate
start, stop = 0 * hidden_size, 1 * hidden_size
reset_gate = torch.sigmoid(direct[start : stop] + gru.bias_ih_l0[start : stop] + recurrent[start : stop] + gru.bias_hh_l0[start : stop])
# update gate
start, stop = 1 * hidden_size, 2 * hidden_size
update_gate = torch.sigmoid(direct[start : stop] + gru.bias_ih_l0[start : stop] + recurrent[start : stop] + gru.bias_hh_l0[start : stop])
# new gate
start, stop = 2 * hidden_size, 3 * hidden_size
new_gate = torch.tanh(direct[start : stop] + gru.bias_ih_l0[start : stop] + reset_gate * (recurrent[start : stop] + gru.bias_hh_l0[start : stop]))
return {'reset_gate' : reset_gate, 'update_gate' : update_gate, 'new_gate' : new_gate}
def init(folder='endoscopy'):
""" sets up output folder for endoscopy data """
global _folder
_folder = folder
if not os.path.exists(folder):
os.makedirs(folder)
else:
print(f"warning: endoscopy folder {folder} exists. Content may be lost or inconsistent results may occur.")
def write_data(key, data, fs):
""" appends data to previous data written under key """
global _state
# convert to numpy if torch.Tensor is given
if isinstance(data, torch.Tensor):
data = data.detach().numpy()
if not key in _state:
_state[key] = {
'fid' : open(os.path.join(_folder, key + '.bin'), 'wb'),
'fs' : fs,
'dim' : tuple(data.shape),
'dtype' : str(data.dtype)
}
with open(os.path.join(_folder, key + '.yml'), 'w') as f:
f.write(yaml.dump({'fs' : fs, 'dim' : tuple(data.shape), 'dtype' : str(data.dtype).split('.')[-1]}))
else:
if _state[key]['fs'] != fs:
raise ValueError(f"fs changed for key {key}: {_state[key]['fs']} vs. {fs}")
if _state[key]['dtype'] != str(data.dtype):
raise ValueError(f"dtype changed for key {key}: {_state[key]['dtype']} vs. {str(data.dtype)}")
if _state[key]['dim'] != tuple(data.shape):
raise ValueError(f"dim changed for key {key}: {_state[key]['dim']} vs. {tuple(data.shape)}")
_state[key]['fid'].write(data.tobytes())
def close(folder='endoscopy'):
""" clean up """
for key in _state.keys():
_state[key]['fid'].close()
def read_data(folder='endoscopy'):
""" retrieves written data as numpy arrays """
keys = [name[:-4] for name in os.listdir(folder) if name.endswith('.yml')]
return_dict = dict()
for key in keys:
with open(os.path.join(folder, key + '.yml'), 'r') as f:
value = yaml.load(f.read(), yaml.FullLoader)
with open(os.path.join(folder, key + '.bin'), 'rb') as f:
data = np.frombuffer(f.read(), dtype=value['dtype'])
value['data'] = data.reshape((-1,) + value['dim'])
return_dict[key] = value
return return_dict
def get_best_reshape(shape, target_ratio=1):
""" calculated the best 2d reshape of shape given the target ratio (rows/cols)"""
if len(shape) > 1:
pixel_count = 1
for s in shape:
pixel_count *= s
else:
pixel_count = shape[0]
if pixel_count == 1:
return (1,)
num_columns = int((pixel_count / target_ratio)**.5)
while (pixel_count % num_columns):
num_columns -= 1
num_rows = pixel_count // num_columns
return (num_rows, num_columns)
def get_type_and_shape(shape):
# can happen if data is one dimensional
if len(shape) == 0:
shape = (1,)
# calculate pixel count
if len(shape) > 1:
pixel_count = 1
for s in shape:
pixel_count *= s
else:
pixel_count = shape[0]
if pixel_count == 1:
return 'plot', (1, )
# stay with shape if already 2-dimensional
if len(shape) == 2:
if (shape[0] != pixel_count) or (shape[1] != pixel_count):
return 'image', shape
return 'image', get_best_reshape(shape)
def make_animation(data, filename, start_index=80, stop_index=-80, interval=20, half_signal_window_length=80):
# determine plot setup
num_keys = len(data.keys())
num_rows = int((num_keys * 3/4) ** .5)
num_cols = (num_keys + num_rows - 1) // num_rows
fig, axs = plt.subplots(num_rows, num_cols)
fig.set_size_inches(num_cols * 5, num_rows * 5)
display = dict()
fs_max = max([val['fs'] for val in data.values()])
num_samples = max([val['data'].shape[0] for val in data.values()])
keys = sorted(data.keys())
# inspect data
for i, key in enumerate(keys):
axs[i // num_cols, i % num_cols].title.set_text(key)
display[key] = dict()
display[key]['type'], display[key]['shape'] = get_type_and_shape(data[key]['dim'])
display[key]['down_factor'] = data[key]['fs'] / fs_max
start_index = max(start_index, half_signal_window_length)
while stop_index < 0:
stop_index += num_samples
stop_index = min(stop_index, num_samples - half_signal_window_length)
# actual plotting
frames = []
for index in range(start_index, stop_index):
ims = []
for i, key in enumerate(keys):
feature_index = int(round(index * display[key]['down_factor']))
if display[key]['type'] == 'plot':
ims.append(axs[i // num_cols, i % num_cols].plot(data[key]['data'][index - half_signal_window_length : index + half_signal_window_length], marker='P', markevery=[half_signal_window_length], animated=True, color='blue')[0])
elif display[key]['type'] == 'image':
ims.append(axs[i // num_cols, i % num_cols].imshow(data[key]['data'][index].reshape(display[key]['shape']), animated=True))
frames.append(ims)
ani = animation.ArtistAnimation(fig, frames, interval=interval, blit=True, repeat_delay=1000)
if not filename.endswith('.mp4'):
filename += '.mp4'
ani.save(filename)