opus/dnn/torch/lpcnet/utils/endoscopy.py
Jan Buethe 35ee397e06
added LPCNet torch implementation
Signed-off-by: Jan Buethe <jbuethe@amazon.de>
2023-09-05 12:29:38 +02:00

205 lines
No EOL
6.3 KiB
Python

""" module for inspecting models during inference """
import os
import yaml
import matplotlib.pyplot as plt
import matplotlib.animation as animation
import torch
import numpy as np
# stores entries {key : {'fid' : fid, 'fs' : fs, 'dim' : dim, 'dtype' : dtype}}
_state = dict()
_folder = 'endoscopy'
def get_gru_gates(gru, input, state):
hidden_size = gru.hidden_size
direct = torch.matmul(gru.weight_ih_l0, input.squeeze())
recurrent = torch.matmul(gru.weight_hh_l0, state.squeeze())
# reset gate
start, stop = 0 * hidden_size, 1 * hidden_size
reset_gate = torch.sigmoid(direct[start : stop] + gru.bias_ih_l0[start : stop] + recurrent[start : stop] + gru.bias_hh_l0[start : stop])
# update gate
start, stop = 1 * hidden_size, 2 * hidden_size
update_gate = torch.sigmoid(direct[start : stop] + gru.bias_ih_l0[start : stop] + recurrent[start : stop] + gru.bias_hh_l0[start : stop])
# new gate
start, stop = 2 * hidden_size, 3 * hidden_size
new_gate = torch.tanh(direct[start : stop] + gru.bias_ih_l0[start : stop] + reset_gate * (recurrent[start : stop] + gru.bias_hh_l0[start : stop]))
return {'reset_gate' : reset_gate, 'update_gate' : update_gate, 'new_gate' : new_gate}
def init(folder='endoscopy'):
""" sets up output folder for endoscopy data """
global _folder
_folder = folder
if not os.path.exists(folder):
os.makedirs(folder)
else:
print(f"warning: endoscopy folder {folder} exists. Content may be lost or inconsistent results may occur.")
def write_data(key, data, fs):
""" appends data to previous data written under key """
global _state
# convert to numpy if torch.Tensor is given
if isinstance(data, torch.Tensor):
data = data.detach().numpy()
if not key in _state:
_state[key] = {
'fid' : open(os.path.join(_folder, key + '.bin'), 'wb'),
'fs' : fs,
'dim' : tuple(data.shape),
'dtype' : str(data.dtype)
}
with open(os.path.join(_folder, key + '.yml'), 'w') as f:
f.write(yaml.dump({'fs' : fs, 'dim' : tuple(data.shape), 'dtype' : str(data.dtype).split('.')[-1]}))
else:
if _state[key]['fs'] != fs:
raise ValueError(f"fs changed for key {key}: {_state[key]['fs']} vs. {fs}")
if _state[key]['dtype'] != str(data.dtype):
raise ValueError(f"dtype changed for key {key}: {_state[key]['dtype']} vs. {str(data.dtype)}")
if _state[key]['dim'] != tuple(data.shape):
raise ValueError(f"dim changed for key {key}: {_state[key]['dim']} vs. {tuple(data.shape)}")
_state[key]['fid'].write(data.tobytes())
def close(folder='endoscopy'):
""" clean up """
for key in _state.keys():
_state[key]['fid'].close()
def read_data(folder='endoscopy'):
""" retrieves written data as numpy arrays """
keys = [name[:-4] for name in os.listdir(folder) if name.endswith('.yml')]
return_dict = dict()
for key in keys:
with open(os.path.join(folder, key + '.yml'), 'r') as f:
value = yaml.load(f.read(), yaml.FullLoader)
with open(os.path.join(folder, key + '.bin'), 'rb') as f:
data = np.frombuffer(f.read(), dtype=value['dtype'])
value['data'] = data.reshape((-1,) + value['dim'])
return_dict[key] = value
return return_dict
def get_best_reshape(shape, target_ratio=1):
""" calculated the best 2d reshape of shape given the target ratio (rows/cols)"""
if len(shape) > 1:
pixel_count = 1
for s in shape:
pixel_count *= s
else:
pixel_count = shape[0]
if pixel_count == 1:
return (1,)
num_columns = int((pixel_count / target_ratio)**.5)
while (pixel_count % num_columns):
num_columns -= 1
num_rows = pixel_count // num_columns
return (num_rows, num_columns)
def get_type_and_shape(shape):
# can happen if data is one dimensional
if len(shape) == 0:
shape = (1,)
# calculate pixel count
if len(shape) > 1:
pixel_count = 1
for s in shape:
pixel_count *= s
else:
pixel_count = shape[0]
if pixel_count == 1:
return 'plot', (1, )
# stay with shape if already 2-dimensional
if len(shape) == 2:
if (shape[0] != pixel_count) or (shape[1] != pixel_count):
return 'image', shape
return 'image', get_best_reshape(shape)
def make_animation(data, filename, start_index=80, stop_index=-80, interval=20, half_signal_window_length=80):
# determine plot setup
num_keys = len(data.keys())
num_rows = int((num_keys * 3/4) ** .5)
num_cols = (num_keys + num_rows - 1) // num_rows
fig, axs = plt.subplots(num_rows, num_cols)
fig.set_size_inches(num_cols * 5, num_rows * 5)
display = dict()
fs_max = max([val['fs'] for val in data.values()])
num_samples = max([val['data'].shape[0] for val in data.values()])
keys = sorted(data.keys())
# inspect data
for i, key in enumerate(keys):
axs[i // num_cols, i % num_cols].title.set_text(key)
display[key] = dict()
display[key]['type'], display[key]['shape'] = get_type_and_shape(data[key]['dim'])
display[key]['down_factor'] = data[key]['fs'] / fs_max
start_index = max(start_index, half_signal_window_length)
while stop_index < 0:
stop_index += num_samples
stop_index = min(stop_index, num_samples - half_signal_window_length)
# actual plotting
frames = []
for index in range(start_index, stop_index):
ims = []
for i, key in enumerate(keys):
feature_index = int(round(index * display[key]['down_factor']))
if display[key]['type'] == 'plot':
ims.append(axs[i // num_cols, i % num_cols].plot(data[key]['data'][index - half_signal_window_length : index + half_signal_window_length], marker='P', markevery=[half_signal_window_length], animated=True, color='blue')[0])
elif display[key]['type'] == 'image':
ims.append(axs[i // num_cols, i % num_cols].imshow(data[key]['data'][index].reshape(display[key]['shape']), animated=True))
frames.append(ims)
ani = animation.ArtistAnimation(fig, frames, interval=interval, blit=True, repeat_delay=1000)
if not filename.endswith('.mp4'):
filename += '.mp4'
ani.save(filename)