mirror of
https://github.com/xiph/opus.git
synced 2025-06-06 23:40:50 +00:00
420 lines
12 KiB
C
420 lines
12 KiB
C
/* (C) 2007-2008 Jean-Marc Valin, CSIRO
|
|
*/
|
|
/*
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions
|
|
are met:
|
|
|
|
- Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
|
|
- Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
|
|
- Neither the name of the Xiph.org Foundation nor the names of its
|
|
contributors may be used to endorse or promote products derived from
|
|
this software without specific prior written permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
|
|
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include "config.h"
|
|
#endif
|
|
|
|
#include "mathops.h"
|
|
#include "cwrs.h"
|
|
#include "vq.h"
|
|
#include "arch.h"
|
|
#include "os_support.h"
|
|
|
|
/** Takes the pitch vector and the decoded residual vector, computes the gain
|
|
that will give ||p+g*y||=1 and mixes the residual with the pitch. */
|
|
static void mix_pitch_and_residual(int * restrict iy, celt_norm_t * restrict X, int N, int K, const celt_norm_t * restrict P)
|
|
{
|
|
int i;
|
|
celt_word32_t Ryp, Ryy, Rpp;
|
|
celt_word32_t g;
|
|
VARDECL(celt_norm_t, y);
|
|
#ifdef FIXED_POINT
|
|
int yshift;
|
|
#endif
|
|
SAVE_STACK;
|
|
#ifdef FIXED_POINT
|
|
yshift = 13-celt_ilog2(K);
|
|
#endif
|
|
ALLOC(y, N, celt_norm_t);
|
|
|
|
/*for (i=0;i<N;i++)
|
|
printf ("%d ", iy[i]);*/
|
|
Rpp = 0;
|
|
for (i=0;i<N;i++)
|
|
Rpp = MAC16_16(Rpp,P[i],P[i]);
|
|
|
|
for (i=0;i<N;i++)
|
|
y[i] = SHL16(iy[i],yshift);
|
|
|
|
Ryp = 0;
|
|
Ryy = 0;
|
|
/* If this doesn't generate a dual MAC (on supported archs), fire the compiler guy */
|
|
for (i=0;i<N;i++)
|
|
{
|
|
Ryp = MAC16_16(Ryp, y[i], P[i]);
|
|
Ryy = MAC16_16(Ryy, y[i], y[i]);
|
|
}
|
|
|
|
/* g = (sqrt(Ryp^2 + Ryy - Rpp*Ryy)-Ryp)/Ryy */
|
|
g = MULT16_32_Q15(
|
|
celt_sqrt(MULT16_16(ROUND16(Ryp,14),ROUND16(Ryp,14)) + Ryy -
|
|
MULT16_16(ROUND16(Ryy,14),ROUND16(Rpp,14)))
|
|
- ROUND16(Ryp,14),
|
|
celt_rcp(SHR32(Ryy,9)));
|
|
|
|
for (i=0;i<N;i++)
|
|
X[i] = P[i] + ROUND16(MULT16_16(y[i], g),11);
|
|
RESTORE_STACK;
|
|
}
|
|
|
|
|
|
void alg_quant(celt_norm_t *X, celt_mask_t *W, int N, int K, const celt_norm_t *P, ec_enc *enc)
|
|
{
|
|
VARDECL(celt_norm_t, y);
|
|
VARDECL(int, iy);
|
|
VARDECL(int, signx);
|
|
int i, j, is;
|
|
celt_word16_t s;
|
|
int pulsesLeft;
|
|
celt_word32_t sum;
|
|
celt_word32_t xy, yy, yp;
|
|
celt_word16_t Rpp;
|
|
#ifdef FIXED_POINT
|
|
int yshift;
|
|
#endif
|
|
SAVE_STACK;
|
|
|
|
#ifdef FIXED_POINT
|
|
yshift = 13-celt_ilog2(K);
|
|
#endif
|
|
|
|
ALLOC(y, N, celt_norm_t);
|
|
ALLOC(iy, N, int);
|
|
ALLOC(signx, N, int);
|
|
|
|
for (j=0;j<N;j++)
|
|
{
|
|
if (X[j]>0)
|
|
signx[j]=1;
|
|
else
|
|
signx[j]=-1;
|
|
}
|
|
|
|
sum = 0;
|
|
for (j=0;j<N;j++)
|
|
{
|
|
sum = MAC16_16(sum, P[j],P[j]);
|
|
}
|
|
Rpp = ROUND16(sum, NORM_SHIFT);
|
|
|
|
celt_assert2(Rpp<=NORM_SCALING, "Rpp should never have a norm greater than unity");
|
|
|
|
for (i=0;i<N;i++)
|
|
y[i] = 0;
|
|
for (i=0;i<N;i++)
|
|
iy[i] = 0;
|
|
xy = yy = yp = 0;
|
|
|
|
pulsesLeft = K;
|
|
while (pulsesLeft > 0)
|
|
{
|
|
int pulsesAtOnce=1;
|
|
int sign;
|
|
celt_word32_t Rxy, Ryy, Ryp;
|
|
celt_word32_t g;
|
|
celt_word32_t best_num;
|
|
celt_word16_t best_den;
|
|
int best_id;
|
|
|
|
/* Decide on how many pulses to find at once */
|
|
pulsesAtOnce = pulsesLeft/N;
|
|
if (pulsesAtOnce<1)
|
|
pulsesAtOnce = 1;
|
|
|
|
/* This should ensure that anything we can process will have a better score */
|
|
best_num = -SHR32(VERY_LARGE32,4);
|
|
best_den = 0;
|
|
best_id = 0;
|
|
/* Choose between fast and accurate strategy depending on where we are in the search */
|
|
if (pulsesLeft>1)
|
|
{
|
|
/* OPT: This loop is very CPU-intensive */
|
|
j=0;
|
|
do {
|
|
celt_word32_t num;
|
|
celt_word16_t den;
|
|
/* Select sign based on X[j] alone */
|
|
sign = signx[j];
|
|
s = SHL16(sign*pulsesAtOnce, yshift);
|
|
/* Temporary sums of the new pulse(s) */
|
|
Rxy = xy + MULT16_16(s,X[j]);
|
|
Ryy = yy + 2*MULT16_16(s,y[j]) + MULT16_16(s,s);
|
|
|
|
/* Approximate score: we maximise Rxy/sqrt(Ryy) */
|
|
num = MULT16_16(ROUND16(Rxy,14),ABS16(ROUND16(Rxy,14)));
|
|
den = ROUND16(Ryy,14);
|
|
/* The idea is to check for num/den >= best_num/best_den, but that way
|
|
we can do it without any division */
|
|
/* OPT: Make sure to use a conditional move here */
|
|
if (MULT16_32_Q15(best_den, num) > MULT16_32_Q15(den, best_num))
|
|
{
|
|
best_den = den;
|
|
best_num = num;
|
|
best_id = j;
|
|
}
|
|
} while (++j<N); /* Promises we loop at least once */
|
|
} else {
|
|
for (j=0;j<N;j++)
|
|
{
|
|
celt_word32_t num;
|
|
/* Select sign based on X[j] alone */
|
|
sign = signx[j];
|
|
s = SHL16(sign*pulsesAtOnce, yshift);
|
|
/* Temporary sums of the new pulse(s) */
|
|
Rxy = xy + MULT16_16(s,X[j]);
|
|
Ryy = yy + 2*MULT16_16(s,y[j]) + MULT16_16(s,s);
|
|
Ryp = yp + MULT16_16(s, P[j]);
|
|
|
|
/* Compute the gain such that ||p + g*y|| = 1 */
|
|
g = MULT16_32_Q15(
|
|
celt_sqrt(MULT16_16(ROUND16(Ryp,14),ROUND16(Ryp,14)) + Ryy -
|
|
MULT16_16(ROUND16(Ryy,14),Rpp))
|
|
- ROUND16(Ryp,14),
|
|
celt_rcp(SHR32(Ryy,12)));
|
|
/* Knowing that gain, what's the error: (x-g*y)^2
|
|
(result is negated and we discard x^2 because it's constant) */
|
|
/* score = 2.f*g*Rxy - 1.f*g*g*Ryy*NORM_SCALING_1;*/
|
|
num = 2*MULT16_32_Q14(ROUND16(Rxy,14),g)
|
|
- MULT16_32_Q14(EXTRACT16(MULT16_32_Q14(ROUND16(Ryy,14),g)),g);
|
|
if (num >= best_num)
|
|
{
|
|
best_num = num;
|
|
best_id = j;
|
|
}
|
|
}
|
|
}
|
|
|
|
j = best_id;
|
|
is = signx[j]*pulsesAtOnce;
|
|
s = SHL16(is, yshift);
|
|
|
|
/* Updating the sums of the new pulse(s) */
|
|
xy = xy + MULT16_16(s,X[j]);
|
|
yy = yy + 2*MULT16_16(s,y[j]) + MULT16_16(s,s);
|
|
yp = yp + MULT16_16(s, P[j]);
|
|
|
|
/* Only now that we've made the final choice, update y/iy */
|
|
y[j] += s;
|
|
iy[j] += is;
|
|
pulsesLeft -= pulsesAtOnce;
|
|
}
|
|
|
|
encode_pulses(iy, N, K, enc);
|
|
|
|
/* Recompute the gain in one pass to reduce the encoder-decoder mismatch
|
|
due to the recursive computation used in quantisation. */
|
|
mix_pitch_and_residual(iy, X, N, K, P);
|
|
RESTORE_STACK;
|
|
}
|
|
|
|
|
|
/** Decode pulse vector and combine the result with the pitch vector to produce
|
|
the final normalised signal in the current band. */
|
|
void alg_unquant(celt_norm_t *X, int N, int K, celt_norm_t *P, ec_dec *dec)
|
|
{
|
|
VARDECL(int, iy);
|
|
SAVE_STACK;
|
|
ALLOC(iy, N, int);
|
|
decode_pulses(iy, N, K, dec);
|
|
mix_pitch_and_residual(iy, X, N, K, P);
|
|
RESTORE_STACK;
|
|
}
|
|
|
|
#ifdef FIXED_POINT
|
|
static const celt_word16_t pg[11] = {32767, 24576, 21299, 19661, 19661, 19661, 18022, 18022, 16384, 16384, 16384};
|
|
#else
|
|
static const celt_word16_t pg[11] = {1.f, .75f, .65f, 0.6f, 0.6f, .6f, .55f, .55f, .5f, .5f, .5f};
|
|
#endif
|
|
|
|
#define MAX_INTRA 32
|
|
#define LOG_MAX_INTRA 5
|
|
|
|
void intra_prediction(celt_norm_t *x, celt_mask_t *W, int N, int K, celt_norm_t *Y, celt_norm_t * restrict P, int B, int N0, ec_enc *enc)
|
|
{
|
|
int i,j;
|
|
int best=0;
|
|
celt_word32_t best_num=-SHR32(VERY_LARGE32,4);
|
|
celt_word16_t best_den=0;
|
|
celt_word16_t s = 1;
|
|
int sign;
|
|
celt_word32_t E;
|
|
celt_word16_t pred_gain;
|
|
int max_pos = N0-N/B;
|
|
if (max_pos > MAX_INTRA)
|
|
max_pos = MAX_INTRA;
|
|
|
|
for (i=0;i<max_pos*B;i+=B)
|
|
{
|
|
celt_word32_t xy=0, yy=0;
|
|
celt_word32_t num;
|
|
celt_word16_t den;
|
|
/* OPT: If this doesn't generate a double-MAC (on supported architectures),
|
|
complain to your compilor vendor */
|
|
j=0;
|
|
do {
|
|
xy = MAC16_16(xy, x[j], Y[i+N-j-1]);
|
|
yy = MAC16_16(yy, Y[i+N-j-1], Y[i+N-j-1]);
|
|
} while (++j<N); /* Promises we loop at least once */
|
|
/* Using xy^2/yy as the score but without having to do the division */
|
|
num = MULT16_16(ROUND16(xy,14),ROUND16(xy,14));
|
|
den = ROUND16(yy,14);
|
|
/* If you're really desperate for speed, just use xy as the score */
|
|
/* OPT: Make sure to use a conditional move here */
|
|
if (MULT16_32_Q15(best_den, num) > MULT16_32_Q15(den, best_num))
|
|
{
|
|
best_num = num;
|
|
best_den = den;
|
|
best = i;
|
|
/* Store xy as the sign. We'll normalise it to +/- 1 later. */
|
|
s = ROUND16(xy,14);
|
|
}
|
|
}
|
|
if (s<0)
|
|
{
|
|
s = -1;
|
|
sign = 1;
|
|
} else {
|
|
s = 1;
|
|
sign = 0;
|
|
}
|
|
/*printf ("%d %d ", sign, best);*/
|
|
ec_enc_bits(enc,sign,1);
|
|
if (max_pos == MAX_INTRA)
|
|
ec_enc_bits(enc,best/B,LOG_MAX_INTRA);
|
|
else
|
|
ec_enc_uint(enc,best/B,max_pos);
|
|
|
|
/*printf ("%d %f\n", best, best_score);*/
|
|
|
|
if (K>10)
|
|
pred_gain = pg[10];
|
|
else
|
|
pred_gain = pg[K];
|
|
E = EPSILON;
|
|
for (j=0;j<N;j++)
|
|
{
|
|
P[j] = s*Y[best+N-j-1];
|
|
E = MAC16_16(E, P[j],P[j]);
|
|
}
|
|
/*pred_gain = pred_gain/sqrt(E);*/
|
|
pred_gain = MULT16_16_Q15(pred_gain,celt_rcp(SHL32(celt_sqrt(E),9)));
|
|
for (j=0;j<N;j++)
|
|
P[j] = PSHR32(MULT16_16(pred_gain, P[j]),8);
|
|
if (K>0)
|
|
{
|
|
for (j=0;j<N;j++)
|
|
x[j] -= P[j];
|
|
} else {
|
|
for (j=0;j<N;j++)
|
|
x[j] = P[j];
|
|
}
|
|
/*printf ("quant ");*/
|
|
/*for (j=0;j<N;j++) printf ("%f ", P[j]);*/
|
|
|
|
}
|
|
|
|
void intra_unquant(celt_norm_t *x, int N, int K, celt_norm_t *Y, celt_norm_t * restrict P, int B, int N0, ec_dec *dec)
|
|
{
|
|
int j;
|
|
int sign;
|
|
celt_word16_t s;
|
|
int best;
|
|
celt_word32_t E;
|
|
celt_word16_t pred_gain;
|
|
int max_pos = N0-N/B;
|
|
if (max_pos > MAX_INTRA)
|
|
max_pos = MAX_INTRA;
|
|
|
|
sign = ec_dec_bits(dec, 1);
|
|
if (sign == 0)
|
|
s = 1;
|
|
else
|
|
s = -1;
|
|
|
|
if (max_pos == MAX_INTRA)
|
|
best = B*ec_dec_bits(dec, LOG_MAX_INTRA);
|
|
else
|
|
best = B*ec_dec_uint(dec, max_pos);
|
|
/*printf ("%d %d ", sign, best);*/
|
|
|
|
if (K>10)
|
|
pred_gain = pg[10];
|
|
else
|
|
pred_gain = pg[K];
|
|
E = EPSILON;
|
|
for (j=0;j<N;j++)
|
|
{
|
|
P[j] = s*Y[best+N-j-1];
|
|
E = MAC16_16(E, P[j],P[j]);
|
|
}
|
|
/*pred_gain = pred_gain/sqrt(E);*/
|
|
pred_gain = MULT16_16_Q15(pred_gain,celt_rcp(SHL32(celt_sqrt(E),9)));
|
|
for (j=0;j<N;j++)
|
|
P[j] = PSHR32(MULT16_16(pred_gain, P[j]),8);
|
|
if (K==0)
|
|
{
|
|
for (j=0;j<N;j++)
|
|
x[j] = P[j];
|
|
}
|
|
}
|
|
|
|
void intra_fold(celt_norm_t *x, int N, celt_norm_t *Y, celt_norm_t * restrict P, int B, int N0, int Nmax)
|
|
{
|
|
int i, j;
|
|
celt_word32_t E;
|
|
celt_word16_t g;
|
|
|
|
E = EPSILON;
|
|
if (N0 >= (Nmax>>1))
|
|
{
|
|
for (i=0;i<B;i++)
|
|
{
|
|
for (j=0;j<N/B;j++)
|
|
{
|
|
P[j*B+i] = Y[(Nmax-N0-j-1)*B+i];
|
|
E += P[j*B+i]*P[j*B+i];
|
|
}
|
|
}
|
|
} else {
|
|
for (j=0;j<N;j++)
|
|
{
|
|
P[j] = Y[j];
|
|
E = MAC16_16(E, P[j],P[j]);
|
|
}
|
|
}
|
|
g = celt_rcp(SHL32(celt_sqrt(E),9));
|
|
for (j=0;j<N;j++)
|
|
P[j] = PSHR32(MULT16_16(g, P[j]),8);
|
|
for (j=0;j<N;j++)
|
|
x[j] = P[j];
|
|
}
|
|
|