mirror of
https://github.com/xiph/opus.git
synced 2025-06-06 07:21:03 +00:00
276 lines
7.5 KiB
C
276 lines
7.5 KiB
C
/* Copyright (C) 2002-2008 Jean-Marc Valin */
|
|
/**
|
|
@file mathops.h
|
|
@brief Various math functions
|
|
*/
|
|
/*
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions
|
|
are met:
|
|
|
|
- Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
|
|
- Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
|
|
- Neither the name of the Xiph.org Foundation nor the names of its
|
|
contributors may be used to endorse or promote products derived from
|
|
this software without specific prior written permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
|
|
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#ifndef MATHOPS_H
|
|
#define MATHOPS_H
|
|
|
|
#include "arch.h"
|
|
#include "entcode.h"
|
|
#include "os_support.h"
|
|
|
|
#ifndef OVERRIDE_CELT_ILOG2
|
|
/** Integer log in base2. Undefined for zero and negative numbers */
|
|
static inline celt_int16_t celt_ilog2(celt_word32_t x)
|
|
{
|
|
celt_assert2(x>0, "celt_ilog2() only defined for strictly positive numbers");
|
|
return EC_ILOG(x)-1;
|
|
}
|
|
#endif
|
|
|
|
#ifndef OVERRIDE_FIND_MAX16
|
|
static inline int find_max16(celt_word16_t *x, int len)
|
|
{
|
|
celt_word16_t max_corr=-VERY_LARGE16;
|
|
int i, id = 0;
|
|
for (i=0;i<len;i++)
|
|
{
|
|
if (x[i] > max_corr)
|
|
{
|
|
id = i;
|
|
max_corr = x[i];
|
|
}
|
|
}
|
|
return id;
|
|
}
|
|
#endif
|
|
|
|
#ifndef OVERRIDE_FIND_MAX32
|
|
static inline int find_max32(celt_word32_t *x, int len)
|
|
{
|
|
celt_word32_t max_corr=-VERY_LARGE32;
|
|
int i, id = 0;
|
|
for (i=0;i<len;i++)
|
|
{
|
|
if (x[i] > max_corr)
|
|
{
|
|
id = i;
|
|
max_corr = x[i];
|
|
}
|
|
}
|
|
return id;
|
|
}
|
|
#endif
|
|
|
|
|
|
#ifndef FIXED_POINT
|
|
|
|
#define celt_sqrt(x) ((float)sqrt(x))
|
|
#define celt_psqrt(x) ((float)sqrt(x))
|
|
#define celt_rsqrt(x) (1.f/celt_sqrt(x))
|
|
#define celt_acos acos
|
|
#define celt_exp exp
|
|
#define celt_cos_norm(x) (cos((.5f*M_PI)*(x)))
|
|
#define celt_atan atan
|
|
#define celt_rcp(x) (1.f/(x))
|
|
#define celt_div(a,b) ((a)/(b))
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifdef FIXED_POINT
|
|
|
|
#include "os_support.h"
|
|
|
|
#ifndef OVERRIDE_CELT_MAXABS16
|
|
static inline celt_word16_t celt_maxabs16(celt_word16_t *x, int len)
|
|
{
|
|
int i;
|
|
celt_word16_t maxval = 0;
|
|
for (i=0;i<len;i++)
|
|
maxval = MAX16(maxval, ABS16(x[i]));
|
|
return maxval;
|
|
}
|
|
#endif
|
|
|
|
/** Integer log in base2. Defined for zero, but not for negative numbers */
|
|
static inline celt_int16_t celt_zlog2(celt_word32_t x)
|
|
{
|
|
return x <= 0 ? 0 : celt_ilog2(x);
|
|
}
|
|
|
|
/** Reciprocal sqrt approximation (Q30 input, Q0 output or equivalent) */
|
|
static inline celt_word32_t celt_rsqrt(celt_word32_t x)
|
|
{
|
|
int k;
|
|
celt_word16_t n;
|
|
celt_word32_t rt;
|
|
const celt_word16_t C[5] = {23126, -11496, 9812, -9097, 4100};
|
|
k = celt_ilog2(x)>>1;
|
|
x = VSHR32(x, (k-7)<<1);
|
|
/* Range of n is [-16384,32767] */
|
|
n = x-32768;
|
|
rt = ADD16(C[0], MULT16_16_Q15(n, ADD16(C[1], MULT16_16_Q15(n, ADD16(C[2],
|
|
MULT16_16_Q15(n, ADD16(C[3], MULT16_16_Q15(n, (C[4])))))))));
|
|
rt = VSHR32(rt,k);
|
|
return rt;
|
|
}
|
|
|
|
/** Sqrt approximation (QX input, QX/2 output) */
|
|
static inline celt_word32_t celt_sqrt(celt_word32_t x)
|
|
{
|
|
int k;
|
|
celt_word16_t n;
|
|
celt_word32_t rt;
|
|
const celt_word16_t C[5] = {23174, 11584, -3011, 1570, -557};
|
|
if (x==0)
|
|
return 0;
|
|
k = (celt_ilog2(x)>>1)-7;
|
|
x = VSHR32(x, (k<<1));
|
|
n = x-32768;
|
|
rt = ADD16(C[0], MULT16_16_Q15(n, ADD16(C[1], MULT16_16_Q15(n, ADD16(C[2],
|
|
MULT16_16_Q15(n, ADD16(C[3], MULT16_16_Q15(n, (C[4])))))))));
|
|
rt = VSHR32(rt,7-k);
|
|
return rt;
|
|
}
|
|
|
|
/** Sqrt approximation (QX input, QX/2 output) that assumes that the input is
|
|
strictly positive */
|
|
static inline celt_word32_t celt_psqrt(celt_word32_t x)
|
|
{
|
|
int k;
|
|
celt_word16_t n;
|
|
celt_word32_t rt;
|
|
const celt_word16_t C[5] = {23174, 11584, -3011, 1570, -557};
|
|
k = (celt_ilog2(x)>>1)-7;
|
|
x = VSHR32(x, (k<<1));
|
|
n = x-32768;
|
|
rt = ADD16(C[0], MULT16_16_Q15(n, ADD16(C[1], MULT16_16_Q15(n, ADD16(C[2],
|
|
MULT16_16_Q15(n, ADD16(C[3], MULT16_16_Q15(n, (C[4])))))))));
|
|
rt = VSHR32(rt,7-k);
|
|
return rt;
|
|
}
|
|
|
|
#define L1 32767
|
|
#define L2 -7651
|
|
#define L3 8277
|
|
#define L4 -626
|
|
|
|
static inline celt_word16_t _celt_cos_pi_2(celt_word16_t x)
|
|
{
|
|
celt_word16_t x2;
|
|
|
|
x2 = MULT16_16_P15(x,x);
|
|
return ADD16(1,MIN16(32766,ADD32(SUB16(L1,x2), MULT16_16_P15(x2, ADD32(L2, MULT16_16_P15(x2, ADD32(L3, MULT16_16_P15(L4, x2
|
|
))))))));
|
|
}
|
|
|
|
#undef L1
|
|
#undef L2
|
|
#undef L3
|
|
#undef L4
|
|
|
|
static inline celt_word16_t celt_cos_norm(celt_word32_t x)
|
|
{
|
|
x = x&0x0001ffff;
|
|
if (x>SHL32(EXTEND32(1), 16))
|
|
x = SUB32(SHL32(EXTEND32(1), 17),x);
|
|
if (x&0x00007fff)
|
|
{
|
|
if (x<SHL32(EXTEND32(1), 15))
|
|
{
|
|
return _celt_cos_pi_2(EXTRACT16(x));
|
|
} else {
|
|
return NEG32(_celt_cos_pi_2(EXTRACT16(65536-x)));
|
|
}
|
|
} else {
|
|
if (x&0x0000ffff)
|
|
return 0;
|
|
else if (x&0x0001ffff)
|
|
return -32767;
|
|
else
|
|
return 32767;
|
|
}
|
|
}
|
|
|
|
static inline celt_word16_t celt_log2(celt_word32_t x)
|
|
{
|
|
int i;
|
|
celt_word16_t n, frac;
|
|
/*-0.41446 0.96093 -0.33981 0.15600 */
|
|
const celt_word16_t C[4] = {-6791, 7872, -1392, 319};
|
|
if (x==0)
|
|
return -32767;
|
|
i = celt_ilog2(x);
|
|
n = VSHR32(x,i-15)-32768-16384;
|
|
frac = ADD16(C[0], MULT16_16_Q14(n, ADD16(C[1], MULT16_16_Q14(n, ADD16(C[2], MULT16_16_Q14(n, (C[3])))))));
|
|
/*printf ("%d %d %d %d\n", x, n, ret, SHL16(i-13,8)+SHR16(ret,14-8));*/
|
|
return SHL16(i-13,8)+SHR16(frac,14-8);
|
|
}
|
|
|
|
/*
|
|
K0 = 1
|
|
K1 = log(2)
|
|
K2 = 3-4*log(2)
|
|
K3 = 3*log(2) - 2
|
|
*/
|
|
#define D0 16384
|
|
#define D1 11356
|
|
#define D2 3726
|
|
#define D3 1301
|
|
/** Base-2 exponential approximation (2^x). (Q11 input, Q16 output) */
|
|
static inline celt_word32_t celt_exp2(celt_word16_t x)
|
|
{
|
|
int integer;
|
|
celt_word16_t frac;
|
|
integer = SHR16(x,11);
|
|
if (integer>14)
|
|
return 0x7fffffff;
|
|
else if (integer < -15)
|
|
return 0;
|
|
frac = SHL16(x-SHL16(integer,11),3);
|
|
frac = ADD16(D0, MULT16_16_Q14(frac, ADD16(D1, MULT16_16_Q14(frac, ADD16(D2 , MULT16_16_Q14(D3,frac))))));
|
|
return VSHR32(EXTEND32(frac), -integer-2);
|
|
}
|
|
|
|
/** Reciprocal approximation (Q15 input, Q16 output) */
|
|
static inline celt_word32_t celt_rcp(celt_word32_t x)
|
|
{
|
|
int i;
|
|
celt_word16_t n, frac;
|
|
const celt_word16_t C[5] = {21848, -7251, 2403, -934, 327};
|
|
celt_assert2(x>0, "celt_rcp() only defined for positive values");
|
|
i = celt_ilog2(x);
|
|
n = VSHR32(x,i-16)-SHL32(EXTEND32(3),15);
|
|
frac = ADD16(C[0], MULT16_16_Q15(n, ADD16(C[1], MULT16_16_Q15(n, ADD16(C[2],
|
|
MULT16_16_Q15(n, ADD16(C[3], MULT16_16_Q15(n, (C[4])))))))));
|
|
return VSHR32(EXTEND32(frac),i-16);
|
|
}
|
|
|
|
#define celt_div(a,b) MULT32_32_Q31((celt_word32_t)(a),celt_rcp(b))
|
|
|
|
#endif /* FIXED_POINT */
|
|
|
|
|
|
#endif /* MATHOPS_H */
|