331 lines
9.5 KiB
C
331 lines
9.5 KiB
C
/* (C) 2007 Jean-Marc Valin, CSIRO
|
|
*/
|
|
/*
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions
|
|
are met:
|
|
|
|
- Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
|
|
- Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
|
|
- Neither the name of the Xiph.org Foundation nor the names of its
|
|
contributors may be used to endorse or promote products derived from
|
|
this software without specific prior written permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
|
|
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <math.h>
|
|
#include "bands.h"
|
|
#include "modes.h"
|
|
#include "vq.h"
|
|
#include "cwrs.h"
|
|
|
|
/* Applies a series of rotations so that pulses are spread like a two-sided
|
|
exponential. The effect of this is to reduce the tonal noise created by the
|
|
sparse spectrum resulting from the pulse codebook */
|
|
static void exp_rotation(float *X, int len, float theta, int dir, int stride, int iter)
|
|
{
|
|
int i, k;
|
|
float c, s;
|
|
c = cos(theta);
|
|
s = sin(theta);
|
|
if (dir > 0)
|
|
{
|
|
for (k=0;k<iter;k++)
|
|
{
|
|
for (i=0;i<len-stride;i++)
|
|
{
|
|
float x1, x2;
|
|
x1 = X[i];
|
|
x2 = X[i+stride];
|
|
X[i] = c*x1 - s*x2;
|
|
X[i+stride] = c*x2 + s*x1;
|
|
}
|
|
for (i=len-2*stride-1;i>=0;i--)
|
|
{
|
|
float x1, x2;
|
|
x1 = X[i];
|
|
x2 = X[i+stride];
|
|
X[i] = c*x1 - s*x2;
|
|
X[i+stride] = c*x2 + s*x1;
|
|
}
|
|
}
|
|
} else {
|
|
for (k=0;k<iter;k++)
|
|
{
|
|
for (i=0;i<len-2*stride;i++)
|
|
{
|
|
float x1, x2;
|
|
x1 = X[i];
|
|
x2 = X[i+stride];
|
|
X[i] = c*x1 + s*x2;
|
|
X[i+stride] = c*x2 - s*x1;
|
|
}
|
|
for (i=len-stride-1;i>=0;i--)
|
|
{
|
|
float x1, x2;
|
|
x1 = X[i];
|
|
x2 = X[i+stride];
|
|
X[i] = c*x1 + s*x2;
|
|
X[i+stride] = c*x2 - s*x1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Compute the amplitude (sqrt energy) in each of the bands */
|
|
void compute_band_energies(const CELTMode *m, float *X, float *bank)
|
|
{
|
|
int i, c, B, C;
|
|
const int *eBands = m->eBands;
|
|
B = m->nbMdctBlocks;
|
|
C = m->nbChannels;
|
|
for (c=0;c<C;c++)
|
|
{
|
|
for (i=0;i<m->nbEBands;i++)
|
|
{
|
|
int j;
|
|
float sum = 1e-10;
|
|
for (j=B*eBands[i];j<B*eBands[i+1];j++)
|
|
sum += X[j*C+c]*X[j*C+c];
|
|
bank[i*C+c] = sqrt(C*sum);
|
|
//printf ("%f ", bank[i*C+c]);
|
|
}
|
|
}
|
|
//printf ("\n");
|
|
}
|
|
|
|
/* Normalise each band such that the energy is one. */
|
|
void normalise_bands(const CELTMode *m, float *X, float *bank)
|
|
{
|
|
int i, c, B, C;
|
|
const int *eBands = m->eBands;
|
|
B = m->nbMdctBlocks;
|
|
C = m->nbChannels;
|
|
for (c=0;c<C;c++)
|
|
{
|
|
for (i=0;i<m->nbEBands;i++)
|
|
{
|
|
int j;
|
|
float g = 1.f/(1e-10+bank[i*C+c]);
|
|
for (j=B*eBands[i];j<B*eBands[i+1];j++)
|
|
X[j*C+c] *= g;
|
|
}
|
|
}
|
|
for (i=B*C*eBands[m->nbEBands];i<B*C*eBands[m->nbEBands+1];i++)
|
|
X[i] = 0;
|
|
}
|
|
|
|
void renormalise_bands(const CELTMode *m, float *X)
|
|
{
|
|
float tmpE[m->nbEBands*m->nbChannels];
|
|
compute_band_energies(m, X, tmpE);
|
|
normalise_bands(m, X, tmpE);
|
|
}
|
|
|
|
/* De-normalise the energy to produce the synthesis from the unit-energy bands */
|
|
void denormalise_bands(const CELTMode *m, float *X, float *bank)
|
|
{
|
|
int i, c, B, C;
|
|
const int *eBands = m->eBands;
|
|
B = m->nbMdctBlocks;
|
|
C = m->nbChannels;
|
|
for (c=0;c<C;c++)
|
|
{
|
|
for (i=0;i<m->nbEBands;i++)
|
|
{
|
|
int j;
|
|
float g = bank[i*C+c];
|
|
for (j=B*eBands[i];j<B*eBands[i+1];j++)
|
|
X[j*C+c] *= g;
|
|
}
|
|
}
|
|
for (i=B*C*eBands[m->nbEBands];i<B*C*eBands[m->nbEBands+1];i++)
|
|
X[i] = 0;
|
|
}
|
|
|
|
|
|
/* Compute the best gain for each "pitch band" */
|
|
void compute_pitch_gain(const CELTMode *m, float *X, float *P, float *gains, float *bank)
|
|
{
|
|
int i, B;
|
|
const int *eBands = m->eBands;
|
|
const int *pBands = m->pBands;
|
|
B = m->nbMdctBlocks*m->nbChannels;
|
|
float w[B*eBands[m->nbEBands]];
|
|
for (i=0;i<m->nbEBands;i++)
|
|
{
|
|
int j;
|
|
for (j=B*eBands[i];j<B*eBands[i+1];j++)
|
|
w[j] = bank[i];
|
|
}
|
|
|
|
|
|
for (i=0;i<m->nbPBands;i++)
|
|
{
|
|
float Sxy=0;
|
|
float Sxx = 0;
|
|
int j;
|
|
float gain;
|
|
for (j=B*pBands[i];j<B*pBands[i+1];j++)
|
|
{
|
|
Sxy += X[j]*P[j]*w[j];
|
|
Sxx += X[j]*X[j]*w[j];
|
|
}
|
|
gain = Sxy/(1e-10+Sxx);
|
|
//gain = Sxy/(2*(pbank[i+1]-pbank[i]));
|
|
//if (i<3)
|
|
//gain *= 1+.02*gain;
|
|
if (gain > 1.f)
|
|
gain = 1.f;
|
|
if (gain < 0.0f)
|
|
gain = 0.0f;
|
|
/* We need to be a bit conservative, otherwise residual doesn't quantise well */
|
|
gain *= .9f;
|
|
gains[i] = gain;
|
|
//printf ("%f ", 1-sqrt(1-gain*gain));
|
|
}
|
|
/*if(rand()%10==0)
|
|
{
|
|
for (i=0;i<m->nbPBands;i++)
|
|
printf ("%f ", 1-sqrt(1-gains[i]*gains[i]));
|
|
printf ("\n");
|
|
}*/
|
|
for (i=B*pBands[m->nbPBands];i<B*pBands[m->nbPBands+1];i++)
|
|
P[i] = 0;
|
|
}
|
|
|
|
/* Apply the (quantised) gain to each "pitch band" */
|
|
void pitch_quant_bands(const CELTMode *m, float *X, float *P, float *gains)
|
|
{
|
|
int i, B;
|
|
const int *pBands = m->pBands;
|
|
B = m->nbMdctBlocks*m->nbChannels;
|
|
for (i=0;i<m->nbPBands;i++)
|
|
{
|
|
int j;
|
|
for (j=B*pBands[i];j<B*pBands[i+1];j++)
|
|
P[j] *= gains[i];
|
|
//printf ("%f ", gain);
|
|
}
|
|
for (i=B*pBands[m->nbPBands];i<B*pBands[m->nbPBands+1];i++)
|
|
P[i] = 0;
|
|
}
|
|
|
|
|
|
/* Quantisation of the residual */
|
|
void quant_bands(const CELTMode *m, float *X, float *P, float *W, ec_enc *enc)
|
|
{
|
|
int i, j, B;
|
|
const int *eBands = m->eBands;
|
|
B = m->nbMdctBlocks*m->nbChannels;
|
|
float norm[B*eBands[m->nbEBands+1]];
|
|
|
|
/*printf ("%d %d\n", ec_enc_tell(enc, 0), compute_allocation(m, m->nbPulses));*/
|
|
for (i=0;i<m->nbEBands;i++)
|
|
{
|
|
int q;
|
|
float theta, n;
|
|
q = m->nbPulses[i];
|
|
n = sqrt(B*(eBands[i+1]-eBands[i]));
|
|
theta = .007*(B*(eBands[i+1]-eBands[i]))/(.1f+abs(m->nbPulses[i]));
|
|
|
|
if (q<=0) {
|
|
q = -q;
|
|
intra_prediction(X+B*eBands[i], W+B*eBands[i], B*(eBands[i+1]-eBands[i]), q, norm, P+B*eBands[i], B, eBands[i], enc);
|
|
}
|
|
|
|
if (q != 0)
|
|
{
|
|
exp_rotation(P+B*eBands[i], B*(eBands[i+1]-eBands[i]), theta, -1, B, 8);
|
|
exp_rotation(X+B*eBands[i], B*(eBands[i+1]-eBands[i]), theta, -1, B, 8);
|
|
alg_quant(X+B*eBands[i], W+B*eBands[i], B*(eBands[i+1]-eBands[i]), q, P+B*eBands[i], 0.7, enc);
|
|
exp_rotation(X+B*eBands[i], B*(eBands[i+1]-eBands[i]), theta, 1, B, 8);
|
|
}
|
|
for (j=B*eBands[i];j<B*eBands[i+1];j++)
|
|
norm[j] = X[j] * n;
|
|
//printf ("%f ", log2(ncwrs64(B*(eBands[i+1]-eBands[i]), q))/(B*(eBands[i+1]-eBands[i])));
|
|
//printf ("%f ", log2(ncwrs64(B*(eBands[i+1]-eBands[i]), q)));
|
|
}
|
|
//printf ("\n");
|
|
for (i=B*eBands[m->nbEBands];i<B*eBands[m->nbEBands+1];i++)
|
|
X[i] = 0;
|
|
}
|
|
|
|
/* Decoding of the residual */
|
|
void unquant_bands(const CELTMode *m, float *X, float *P, ec_dec *dec)
|
|
{
|
|
int i, j, B;
|
|
const int *eBands = m->eBands;
|
|
B = m->nbMdctBlocks*m->nbChannels;
|
|
float norm[B*eBands[m->nbEBands+1]];
|
|
|
|
for (i=0;i<m->nbEBands;i++)
|
|
{
|
|
int q;
|
|
float theta, n;
|
|
q = m->nbPulses[i];
|
|
n = sqrt(B*(eBands[i+1]-eBands[i]));
|
|
theta = .007*(B*(eBands[i+1]-eBands[i]))/(.1f+abs(m->nbPulses[i]));
|
|
|
|
if (q<=0) {
|
|
q = -q;
|
|
intra_unquant(X+B*eBands[i], B*(eBands[i+1]-eBands[i]), q, norm, P+B*eBands[i], B, eBands[i], dec);
|
|
}
|
|
|
|
if (q != 0)
|
|
{
|
|
exp_rotation(P+B*eBands[i], B*(eBands[i+1]-eBands[i]), theta, -1, B, 8);
|
|
alg_unquant(X+B*eBands[i], B*(eBands[i+1]-eBands[i]), q, P+B*eBands[i], 0.7, dec);
|
|
exp_rotation(X+B*eBands[i], B*(eBands[i+1]-eBands[i]), theta, 1, B, 8);
|
|
}
|
|
for (j=B*eBands[i];j<B*eBands[i+1];j++)
|
|
norm[j] = X[j] * n;
|
|
}
|
|
for (i=B*eBands[m->nbEBands];i<B*eBands[m->nbEBands+1];i++)
|
|
X[i] = 0;
|
|
}
|
|
|
|
void stereo_mix(const CELTMode *m, float *X, float *bank, int dir)
|
|
{
|
|
int i, B, C;
|
|
const int *eBands = m->eBands;
|
|
B = m->nbMdctBlocks;
|
|
C = m->nbChannels;
|
|
for (i=0;i<m->nbEBands;i++)
|
|
{
|
|
int j;
|
|
float left, right;
|
|
float a1, a2;
|
|
left = bank[i*C];
|
|
right = bank[i*C+1];
|
|
a1 = left/sqrt(.01+left*left+right*right);
|
|
a2 = dir*right/sqrt(.01+left*left+right*right);
|
|
for (j=B*eBands[i];j<B*eBands[i+1];j++)
|
|
{
|
|
float r, l;
|
|
l = X[j*C];
|
|
r = X[j*C+1];
|
|
X[j*C] = a1*l + a2*r;
|
|
X[j*C+1] = a1*r - a2*l;
|
|
}
|
|
}
|
|
for (i=B*C*eBands[m->nbEBands];i<B*C*eBands[m->nbEBands+1];i++)
|
|
X[i] = 0;
|
|
|
|
}
|