551 lines
17 KiB
C
551 lines
17 KiB
C
/* (C) 2007-2008 Jean-Marc Valin, CSIRO
|
|
*/
|
|
/*
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions
|
|
are met:
|
|
|
|
- Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
|
|
- Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
|
|
- Neither the name of the Xiph.org Foundation nor the names of its
|
|
contributors may be used to endorse or promote products derived from
|
|
this software without specific prior written permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
|
|
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include "config.h"
|
|
#endif
|
|
|
|
#include <math.h>
|
|
#include "bands.h"
|
|
#include "modes.h"
|
|
#include "vq.h"
|
|
#include "cwrs.h"
|
|
#include "stack_alloc.h"
|
|
#include "os_support.h"
|
|
#include "mathops.h"
|
|
#include "rate.h"
|
|
|
|
const celt_word16_t sqrtC_1[2] = {QCONST16(1.f, 14), QCONST16(1.414214f, 14)};
|
|
|
|
#ifdef FIXED_POINT
|
|
/* Compute the amplitude (sqrt energy) in each of the bands */
|
|
void compute_band_energies(const CELTMode *m, const celt_sig_t *X, celt_ener_t *bank)
|
|
{
|
|
int i, c;
|
|
const celt_int16_t *eBands = m->eBands;
|
|
const int C = CHANNELS(m);
|
|
for (c=0;c<C;c++)
|
|
{
|
|
for (i=0;i<m->nbEBands;i++)
|
|
{
|
|
int j;
|
|
celt_word32_t maxval=0;
|
|
celt_word32_t sum = 0;
|
|
|
|
j=eBands[i]; do {
|
|
maxval = MAX32(maxval, X[j*C+c]);
|
|
maxval = MAX32(maxval, -X[j*C+c]);
|
|
} while (++j<eBands[i+1]);
|
|
|
|
if (maxval > 0)
|
|
{
|
|
int shift = celt_ilog2(maxval)-10;
|
|
j=eBands[i]; do {
|
|
sum = MAC16_16(sum, EXTRACT16(VSHR32(X[j*C+c],shift)),
|
|
EXTRACT16(VSHR32(X[j*C+c],shift)));
|
|
} while (++j<eBands[i+1]);
|
|
/* We're adding one here to make damn sure we never end up with a pitch vector that's
|
|
larger than unity norm */
|
|
bank[i*C+c] = EPSILON+VSHR32(EXTEND32(celt_sqrt(sum)),-shift);
|
|
} else {
|
|
bank[i*C+c] = EPSILON;
|
|
}
|
|
/*printf ("%f ", bank[i*C+c]);*/
|
|
}
|
|
}
|
|
/*printf ("\n");*/
|
|
}
|
|
|
|
/* Normalise each band such that the energy is one. */
|
|
void normalise_bands(const CELTMode *m, const celt_sig_t * restrict freq, celt_norm_t * restrict X, const celt_ener_t *bank)
|
|
{
|
|
int i, c;
|
|
const celt_int16_t *eBands = m->eBands;
|
|
const int C = CHANNELS(m);
|
|
for (c=0;c<C;c++)
|
|
{
|
|
i=0; do {
|
|
celt_word16_t g;
|
|
int j,shift;
|
|
celt_word16_t E;
|
|
shift = celt_zlog2(bank[i*C+c])-13;
|
|
E = VSHR32(bank[i*C+c], shift);
|
|
g = EXTRACT16(celt_rcp(SHR32(MULT16_16(E,sqrtC_1[C-1]),11)));
|
|
j=eBands[i]; do {
|
|
X[j*C+c] = MULT16_16_Q15(VSHR32(freq[j*C+c],shift-1),g);
|
|
} while (++j<eBands[i+1]);
|
|
} while (++i<m->nbEBands);
|
|
}
|
|
}
|
|
|
|
#else /* FIXED_POINT */
|
|
/* Compute the amplitude (sqrt energy) in each of the bands */
|
|
void compute_band_energies(const CELTMode *m, const celt_sig_t *X, celt_ener_t *bank)
|
|
{
|
|
int i, c;
|
|
const celt_int16_t *eBands = m->eBands;
|
|
const int C = CHANNELS(m);
|
|
for (c=0;c<C;c++)
|
|
{
|
|
for (i=0;i<m->nbEBands;i++)
|
|
{
|
|
int j;
|
|
celt_word32_t sum = 1e-10;
|
|
for (j=eBands[i];j<eBands[i+1];j++)
|
|
sum += X[j*C+c]*X[j*C+c];
|
|
bank[i*C+c] = sqrt(sum);
|
|
/*printf ("%f ", bank[i*C+c]);*/
|
|
}
|
|
}
|
|
/*printf ("\n");*/
|
|
}
|
|
|
|
#ifdef EXP_PSY
|
|
void compute_noise_energies(const CELTMode *m, const celt_sig_t *X, const celt_word16_t *tonality, celt_ener_t *bank)
|
|
{
|
|
int i, c;
|
|
const celt_int16_t *eBands = m->eBands;
|
|
const int C = CHANNELS(m);
|
|
for (c=0;c<C;c++)
|
|
{
|
|
for (i=0;i<m->nbEBands;i++)
|
|
{
|
|
int j;
|
|
celt_word32_t sum = 1e-10;
|
|
for (j=eBands[i];j<eBands[i+1];j++)
|
|
sum += X[j*C+c]*X[j*C+c]*tonality[j];
|
|
bank[i*C+c] = sqrt(sum);
|
|
/*printf ("%f ", bank[i*C+c]);*/
|
|
}
|
|
}
|
|
/*printf ("\n");*/
|
|
}
|
|
#endif
|
|
|
|
/* Normalise each band such that the energy is one. */
|
|
void normalise_bands(const CELTMode *m, const celt_sig_t * restrict freq, celt_norm_t * restrict X, const celt_ener_t *bank)
|
|
{
|
|
int i, c;
|
|
const celt_int16_t *eBands = m->eBands;
|
|
const int C = CHANNELS(m);
|
|
for (c=0;c<C;c++)
|
|
{
|
|
for (i=0;i<m->nbEBands;i++)
|
|
{
|
|
int j;
|
|
celt_word16_t g = 1.f/(1e-10+bank[i*C+c]*sqrt(C));
|
|
for (j=eBands[i];j<eBands[i+1];j++)
|
|
X[j*C+c] = freq[j*C+c]*g;
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif /* FIXED_POINT */
|
|
|
|
#ifndef DISABLE_STEREO
|
|
void renormalise_bands(const CELTMode *m, celt_norm_t * restrict X)
|
|
{
|
|
int i, c;
|
|
const celt_int16_t *eBands = m->eBands;
|
|
const int C = CHANNELS(m);
|
|
for (c=0;c<C;c++)
|
|
{
|
|
i=0; do {
|
|
renormalise_vector(X+C*eBands[i]+c, QCONST16(0.70711f, 15), eBands[i+1]-eBands[i], C);
|
|
} while (++i<m->nbEBands);
|
|
}
|
|
}
|
|
#endif /* DISABLE_STEREO */
|
|
|
|
/* De-normalise the energy to produce the synthesis from the unit-energy bands */
|
|
void denormalise_bands(const CELTMode *m, const celt_norm_t * restrict X, celt_sig_t * restrict freq, const celt_ener_t *bank)
|
|
{
|
|
int i, c;
|
|
const celt_int16_t *eBands = m->eBands;
|
|
const int C = CHANNELS(m);
|
|
if (C>2)
|
|
celt_fatal("denormalise_bands() not implemented for >2 channels");
|
|
for (c=0;c<C;c++)
|
|
{
|
|
for (i=0;i<m->nbEBands;i++)
|
|
{
|
|
int j;
|
|
celt_word32_t g = MULT16_32_Q15(sqrtC_1[C-1],bank[i*C+c]);
|
|
j=eBands[i]; do {
|
|
freq[j*C+c] = SHL32(MULT16_32_Q15(X[j*C+c], g),2);
|
|
} while (++j<eBands[i+1]);
|
|
}
|
|
}
|
|
for (i=C*eBands[m->nbEBands];i<C*eBands[m->nbEBands+1];i++)
|
|
freq[i] = 0;
|
|
}
|
|
|
|
|
|
/* Compute the best gain for each "pitch band" */
|
|
int compute_pitch_gain(const CELTMode *m, const celt_norm_t *X, const celt_norm_t *P, celt_pgain_t *gains)
|
|
{
|
|
int i;
|
|
int gain_sum = 0;
|
|
const celt_int16_t *pBands = m->pBands;
|
|
const int C = CHANNELS(m);
|
|
|
|
for (i=0;i<m->nbPBands;i++)
|
|
{
|
|
celt_word32_t Sxy=0, Sxx=0;
|
|
int j;
|
|
/* We know we're not going to overflow because Sxx can't be more than 1 (Q28) */
|
|
for (j=C*pBands[i];j<C*pBands[i+1];j++)
|
|
{
|
|
Sxy = MAC16_16(Sxy, X[j], P[j]);
|
|
Sxx = MAC16_16(Sxx, X[j], X[j]);
|
|
}
|
|
/* No negative gain allowed */
|
|
if (Sxy < 0)
|
|
Sxy = 0;
|
|
/* Not sure how that would happen, just making sure */
|
|
if (Sxy > Sxx)
|
|
Sxy = Sxx;
|
|
/* We need to be a bit conservative (multiply gain by 0.9), otherwise the
|
|
residual doesn't quantise well */
|
|
Sxy = MULT16_32_Q15(QCONST16(.99f, 15), Sxy);
|
|
/* gain = Sxy/Sxx */
|
|
gains[i] = EXTRACT16(celt_div(Sxy,ADD32(SHR32(Sxx, PGAIN_SHIFT),EPSILON)));
|
|
if (gains[i]>QCONST16(.5,15))
|
|
gain_sum++;
|
|
/*printf ("%f ", 1-sqrt(1-gain*gain));*/
|
|
}
|
|
/*if(rand()%10==0)
|
|
{
|
|
for (i=0;i<m->nbPBands;i++)
|
|
printf ("%f ", 1-sqrt(1-gains[i]*gains[i]));
|
|
printf ("\n");
|
|
}*/
|
|
return gain_sum > 5;
|
|
}
|
|
|
|
static void intensity_band(celt_norm_t * restrict X, int len)
|
|
{
|
|
int j;
|
|
celt_word32_t E = 1e-15;
|
|
celt_word32_t E2 = 1e-15;
|
|
for (j=0;j<len;j++)
|
|
{
|
|
X[j] = X[2*j];
|
|
E = MAC16_16(E, X[j],X[j]);
|
|
E2 = MAC16_16(E2, X[2*j+1],X[2*j+1]);
|
|
}
|
|
#ifndef FIXED_POINT
|
|
E = celt_sqrt(E+E2)/celt_sqrt(E);
|
|
for (j=0;j<len;j++)
|
|
X[j] *= E;
|
|
#endif
|
|
for (j=0;j<len;j++)
|
|
X[len+j] = 0;
|
|
|
|
}
|
|
|
|
static void dup_band(celt_norm_t * restrict X, int len)
|
|
{
|
|
int j;
|
|
for (j=len-1;j>=0;j--)
|
|
{
|
|
X[2*j] = MULT16_16_Q15(QCONST16(.70711f,15),X[j]);
|
|
X[2*j+1] = MULT16_16_Q15(QCONST16(.70711f,15),X[j]);
|
|
}
|
|
}
|
|
|
|
static void stereo_band_mix(const CELTMode *m, celt_norm_t *X, const celt_ener_t *bank, const int *stereo_mode, int bandID, int dir)
|
|
{
|
|
int i = bandID;
|
|
const celt_int16_t *eBands = m->eBands;
|
|
const int C = CHANNELS(m);
|
|
{
|
|
int j;
|
|
if (stereo_mode[i] && dir <0)
|
|
{
|
|
dup_band(X+C*eBands[i], eBands[i+1]-eBands[i]);
|
|
} else {
|
|
celt_word16_t a1, a2;
|
|
if (stereo_mode[i]==0)
|
|
{
|
|
/* Do mid-side when not doing intensity stereo */
|
|
a1 = QCONST16(.70711f,14);
|
|
a2 = dir*QCONST16(.70711f,14);
|
|
} else {
|
|
celt_word16_t left, right;
|
|
celt_word16_t norm;
|
|
#ifdef FIXED_POINT
|
|
int shift = celt_zlog2(MAX32(bank[i*C], bank[i*C+1]))-13;
|
|
#endif
|
|
left = VSHR32(bank[i*C],shift);
|
|
right = VSHR32(bank[i*C+1],shift);
|
|
norm = EPSILON + celt_sqrt(EPSILON+MULT16_16(left,left)+MULT16_16(right,right));
|
|
a1 = DIV32_16(SHL32(EXTEND32(left),14),norm);
|
|
a2 = dir*DIV32_16(SHL32(EXTEND32(right),14),norm);
|
|
}
|
|
for (j=eBands[i];j<eBands[i+1];j++)
|
|
{
|
|
celt_norm_t r, l;
|
|
l = X[j*C];
|
|
r = X[j*C+1];
|
|
X[j*C] = MULT16_16_Q14(a1,l) + MULT16_16_Q14(a2,r);
|
|
X[j*C+1] = MULT16_16_Q14(a1,r) - MULT16_16_Q14(a2,l);
|
|
}
|
|
}
|
|
if (stereo_mode[i] && dir>0)
|
|
{
|
|
intensity_band(X+C*eBands[i], eBands[i+1]-eBands[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
void stereo_decision(const CELTMode *m, celt_norm_t * restrict X, int *stereo_mode, int len)
|
|
{
|
|
int i;
|
|
for (i=0;i<len-5;i++)
|
|
stereo_mode[i] = 0;
|
|
for (;i<len;i++)
|
|
stereo_mode[i] = 0;
|
|
}
|
|
|
|
|
|
|
|
/* Quantisation of the residual */
|
|
void quant_bands(const CELTMode *m, celt_norm_t * restrict X, celt_norm_t *P, celt_mask_t *W, int pitch_used, celt_pgain_t *pgains, const celt_ener_t *bandE, const int *stereo_mode, int *pulses, int shortBlocks, int fold, int total_bits, ec_enc *enc)
|
|
{
|
|
int i, j, remaining_bits, balance;
|
|
const celt_int16_t * restrict eBands = m->eBands;
|
|
celt_norm_t * restrict norm;
|
|
VARDECL(celt_norm_t, _norm);
|
|
const int C = CHANNELS(m);
|
|
const celt_int16_t *pBands = m->pBands;
|
|
int pband=-1;
|
|
int B;
|
|
SAVE_STACK;
|
|
|
|
B = shortBlocks ? m->nbShortMdcts : 1;
|
|
ALLOC(_norm, C*eBands[m->nbEBands+1], celt_norm_t);
|
|
norm = _norm;
|
|
|
|
balance = 0;
|
|
/*printf("bits left: %d\n", bits);
|
|
for (i=0;i<m->nbEBands;i++)
|
|
printf ("(%d %d) ", pulses[i], ebits[i]);
|
|
printf ("\n");*/
|
|
/*printf ("%d %d\n", ec_enc_tell(enc, 0), compute_allocation(m, m->nbPulses));*/
|
|
for (i=0;i<m->nbEBands;i++)
|
|
{
|
|
int tell;
|
|
int q;
|
|
celt_word16_t n;
|
|
const celt_int16_t * const *BPbits;
|
|
|
|
int curr_balance, curr_bits;
|
|
|
|
if (C>1 && stereo_mode[i]==0)
|
|
BPbits = m->bits_stereo;
|
|
else
|
|
BPbits = m->bits;
|
|
|
|
tell = ec_enc_tell(enc, 4);
|
|
if (i != 0)
|
|
balance -= tell;
|
|
remaining_bits = (total_bits<<BITRES)-tell-1;
|
|
curr_balance = (m->nbEBands-i);
|
|
if (curr_balance > 3)
|
|
curr_balance = 3;
|
|
curr_balance = balance / curr_balance;
|
|
q = bits2pulses(m, BPbits[i], pulses[i]+curr_balance);
|
|
curr_bits = BPbits[i][q];
|
|
remaining_bits -= curr_bits;
|
|
while (remaining_bits < 0 && q > 0)
|
|
{
|
|
remaining_bits += curr_bits;
|
|
q--;
|
|
curr_bits = BPbits[i][q];
|
|
remaining_bits -= curr_bits;
|
|
}
|
|
balance += pulses[i] + tell;
|
|
|
|
n = SHL16(celt_sqrt(C*(eBands[i+1]-eBands[i])),11);
|
|
|
|
/* If pitch is in use and this eBand begins a pitch band, encode the pitch gain flag */
|
|
if (pitch_used && eBands[i]< m->pitchEnd && eBands[i] == pBands[pband+1])
|
|
{
|
|
int enabled = 1;
|
|
pband++;
|
|
if (remaining_bits >= 1<<BITRES) {
|
|
enabled = pgains[pband] > QCONST16(.5,15);
|
|
ec_enc_bits(enc, enabled, 1);
|
|
balance += 1<<BITRES;
|
|
}
|
|
if (enabled)
|
|
pgains[pband] = QCONST16(.9,15);
|
|
else
|
|
pgains[pband] = 0;
|
|
}
|
|
|
|
/* If pitch isn't available, use intra-frame prediction */
|
|
if ((eBands[i] >= m->pitchEnd && fold) || q<=0)
|
|
{
|
|
intra_fold(m, X+C*eBands[i], eBands[i+1]-eBands[i], q, norm, P+C*eBands[i], eBands[i], B);
|
|
} else if (pitch_used && eBands[i] < m->pitchEnd) {
|
|
for (j=C*eBands[i];j<C*eBands[i+1];j++)
|
|
P[j] = MULT16_16_Q15(pgains[pband], P[j]);
|
|
} else {
|
|
for (j=C*eBands[i];j<C*eBands[i+1];j++)
|
|
P[j] = 0;
|
|
}
|
|
|
|
if (q > 0)
|
|
{
|
|
int ch=C;
|
|
if (C==2 && stereo_mode[i]==1)
|
|
ch = 1;
|
|
if (C==2)
|
|
{
|
|
stereo_band_mix(m, X, bandE, stereo_mode, i, 1);
|
|
stereo_band_mix(m, P, bandE, stereo_mode, i, 1);
|
|
}
|
|
alg_quant(X+C*eBands[i], W+C*eBands[i], ch*(eBands[i+1]-eBands[i]), q, P+C*eBands[i], enc);
|
|
if (C==2)
|
|
stereo_band_mix(m, X, bandE, stereo_mode, i, -1);
|
|
} else {
|
|
for (j=C*eBands[i];j<C*eBands[i+1];j++)
|
|
X[j] = P[j];
|
|
}
|
|
for (j=C*eBands[i];j<C*eBands[i+1];j++)
|
|
norm[j] = MULT16_16_Q15(n,X[j]);
|
|
}
|
|
RESTORE_STACK;
|
|
}
|
|
|
|
/* Decoding of the residual */
|
|
void unquant_bands(const CELTMode *m, celt_norm_t * restrict X, celt_norm_t *P, int pitch_used, celt_pgain_t *pgains, const celt_ener_t *bandE, const int *stereo_mode, int *pulses, int shortBlocks, int fold, int total_bits, ec_dec *dec)
|
|
{
|
|
int i, j, remaining_bits, balance;
|
|
const celt_int16_t * restrict eBands = m->eBands;
|
|
celt_norm_t * restrict norm;
|
|
VARDECL(celt_norm_t, _norm);
|
|
const int C = CHANNELS(m);
|
|
const celt_int16_t *pBands = m->pBands;
|
|
int pband=-1;
|
|
int B;
|
|
SAVE_STACK;
|
|
|
|
B = shortBlocks ? m->nbShortMdcts : 1;
|
|
ALLOC(_norm, C*eBands[m->nbEBands+1], celt_norm_t);
|
|
norm = _norm;
|
|
|
|
balance = 0;
|
|
for (i=0;i<m->nbEBands;i++)
|
|
{
|
|
int tell;
|
|
int q;
|
|
celt_word16_t n;
|
|
const celt_int16_t * const *BPbits;
|
|
|
|
int curr_balance, curr_bits;
|
|
|
|
if (C>1 && stereo_mode[i]==0)
|
|
BPbits = m->bits_stereo;
|
|
else
|
|
BPbits = m->bits;
|
|
|
|
tell = ec_dec_tell(dec, 4);
|
|
if (i != 0)
|
|
balance -= tell;
|
|
remaining_bits = (total_bits<<BITRES)-tell-1;
|
|
curr_balance = (m->nbEBands-i);
|
|
if (curr_balance > 3)
|
|
curr_balance = 3;
|
|
curr_balance = balance / curr_balance;
|
|
q = bits2pulses(m, BPbits[i], pulses[i]+curr_balance);
|
|
curr_bits = BPbits[i][q];
|
|
remaining_bits -= curr_bits;
|
|
while (remaining_bits < 0 && q > 0)
|
|
{
|
|
remaining_bits += curr_bits;
|
|
q--;
|
|
curr_bits = BPbits[i][q];
|
|
remaining_bits -= curr_bits;
|
|
}
|
|
balance += pulses[i] + tell;
|
|
|
|
n = SHL16(celt_sqrt(C*(eBands[i+1]-eBands[i])),11);
|
|
|
|
/* If pitch is in use and this eBand begins a pitch band, encode the pitch gain flag */
|
|
if (pitch_used && eBands[i] < m->pitchEnd && eBands[i] == pBands[pband+1])
|
|
{
|
|
int enabled = 1;
|
|
pband++;
|
|
if (remaining_bits >= 1<<BITRES) {
|
|
enabled = ec_dec_bits(dec, 1);
|
|
balance += 1<<BITRES;
|
|
}
|
|
if (enabled)
|
|
pgains[pband] = QCONST16(.9,15);
|
|
else
|
|
pgains[pband] = 0;
|
|
}
|
|
|
|
/* If pitch isn't available, use intra-frame prediction */
|
|
if ((eBands[i] >= m->pitchEnd && fold) || q<=0)
|
|
{
|
|
intra_fold(m, X+C*eBands[i], eBands[i+1]-eBands[i], q, norm, P+C*eBands[i], eBands[i], B);
|
|
} else if (pitch_used && eBands[i] < m->pitchEnd) {
|
|
for (j=C*eBands[i];j<C*eBands[i+1];j++)
|
|
P[j] = MULT16_16_Q15(pgains[pband], P[j]);
|
|
} else {
|
|
for (j=C*eBands[i];j<C*eBands[i+1];j++)
|
|
P[j] = 0;
|
|
}
|
|
|
|
if (q > 0)
|
|
{
|
|
int ch=C;
|
|
if (C==2 && stereo_mode[i]==1)
|
|
ch = 1;
|
|
if (C==2)
|
|
stereo_band_mix(m, P, bandE, stereo_mode, i, 1);
|
|
alg_unquant(X+C*eBands[i], ch*(eBands[i+1]-eBands[i]), q, P+C*eBands[i], dec);
|
|
if (C==2)
|
|
stereo_band_mix(m, X, bandE, stereo_mode, i, -1);
|
|
} else {
|
|
for (j=C*eBands[i];j<C*eBands[i+1];j++)
|
|
X[j] = P[j];
|
|
}
|
|
for (j=C*eBands[i];j<C*eBands[i+1];j++)
|
|
norm[j] = MULT16_16_Q15(n,X[j]);
|
|
}
|
|
RESTORE_STACK;
|
|
}
|
|
|