opus/dnn/torch/testsuite/run_test.py
2023-07-22 15:16:23 -07:00

375 lines
No EOL
13 KiB
Python

"""
/* Copyright (c) 2023 Amazon
Written by Jan Buethe */
/*
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
"""
import os
import multiprocess as multiprocessing
import random
import subprocess
import argparse
import shutil
import yaml
from utils.files import get_wave_file_list
from utils.pesq import compute_PESQ
from utils.pitch import compute_pitch_error
parser = argparse.ArgumentParser()
parser.add_argument('setup', type=str, help='setup yaml specifying end to end processing with model under test')
parser.add_argument('input_folder', type=str, help='input folder path')
parser.add_argument('output_folder', type=str, help='output folder path')
parser.add_argument('--num-testitems', type=int, help="number of testitems to be processed (default 100)", default=100)
parser.add_argument('--seed', type=int, help='seed for random item selection', default=None)
parser.add_argument('--fs', type=int, help="sampling rate at which input is presented as wave file (defaults to 16000)", default=16000)
parser.add_argument('--num-workers', type=int, help="number of subprocesses to be used (default=4)", default=4)
parser.add_argument('--plc-suffix', type=str, default="_is_lost.txt", help="suffix of plc error pattern file: only relevant if command chain uses PLCFILE (default=_is_lost.txt)")
parser.add_argument('--metrics', type=str, default='pesq', help='comma separated string of metrics, supported: {{"pesq", "pitch_error", "voicing_error"}}, default="pesq"')
parser.add_argument('--verbose', action='store_true', help='enables printouts of all commands run in the pipeline')
def check_for_sox_in_path():
r = subprocess.run("sox -h", shell=True, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
return r.returncode == 0
def run_save_sh(command, verbose=False):
if verbose:
print(f"[run_save_sh] running command {command}...")
r = subprocess.run(command, shell=True)
if r.returncode != 0:
raise RuntimeError(f"command '{command}' failed with exit code {r.returncode}")
def run_processing_chain(input_path, output_path, model_commands, fs, metrics={'pesq'}, plc_suffix="_is_lost.txt", verbose=False):
# prepare model input
model_input = output_path + ".resamp.wav"
run_save_sh(f"sox {input_path} -r {fs} {model_input}", verbose=verbose)
plcfile = os.path.splitext(input_path)[0] + plc_suffix
if os.path.isfile(plcfile):
run_save_sh(f"cp {plcfile} {os.path.dirname(output_path)}")
# generate model output
for command in model_commands:
run_save_sh(command.format(INPUT=model_input, OUTPUT=output_path, PLCFILE=plcfile), verbose=verbose)
scores = dict()
cache = dict()
for metric in metrics:
if metric == 'pesq':
# run pesq
score = compute_PESQ(input_path, output_path, fs=fs)
elif metric == 'pitch_error':
if metric in cache:
score = cache[metric]
else:
rval = compute_pitch_error(input_path, output_path, fs=fs)
score = rval[metric]
cache['voicing_error'] = rval['voicing_error']
elif metric == 'voicing_error':
if metric in cache:
score = cache[metric]
else:
rval = compute_pitch_error(input_path, output_path, fs=fs)
score = rval[metric]
cache['pitch_error'] = rval['pitch_error']
else:
ValueError(f'error: unknown metric {metric}')
scores[metric] = score
return (output_path, scores)
def get_output_path(root_folder, input, output_folder):
input_relpath = os.path.relpath(input, root_folder)
os.makedirs(os.path.join(output_folder, 'processing', os.path.dirname(input_relpath)), exist_ok=True)
output_path = os.path.join(output_folder, 'processing', input_relpath + '.output.wav')
return output_path
def add_audio_table(f, html_folder, results, title, metric):
item_folder = os.path.join(html_folder, 'items')
os.makedirs(item_folder, exist_ok=True)
# table with results
f.write(f"""
<div>
<h2> {title} </h2>
<table>
<tr>
<th> Rank </th>
<th> Name </th>
<th> {metric.upper()} </th>
<th> Audio (out) </th>
<th> Audio (orig) </th>
</tr>
""")
for i, r in enumerate(results):
item, score = r
item_name = os.path.basename(item)
new_item_path = os.path.join(item_folder, item_name)
shutil.copyfile(item, new_item_path)
shutil.copyfile(item + '.resamp.wav', os.path.join(item_folder, item_name + '.orig.wav'))
f.write(f"""
<tr>
<td> {i + 1} </td>
<td> {item_name.split('.')[0]} </td>
<td> {score:.3f} </td>
<td>
<audio controls>
<source src="items/{item_name}">
</audio>
</td>
<td>
<audio controls>
<source src="items/{item_name + '.orig.wav'}">
</audio>
</td>
</tr>
""")
# footer
f.write("""
</table>
</div>
""")
def create_html(output_folder, results, title, metric):
html_folder = output_folder
items_folder = os.path.join(html_folder, 'items')
os.makedirs(html_folder, exist_ok=True)
os.makedirs(items_folder, exist_ok=True)
with open(os.path.join(html_folder, 'index.html'), 'w') as f:
# header and title
f.write(f"""
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>{title}</title>
<style>
article {{
align-items: flex-start;
display: flex;
flex-wrap: wrap;
gap: 4em;
}}
html {{
box-sizing: border-box;
font-family: "Amazon Ember", "Source Sans", "Verdana", "Calibri", sans-serif;
padding: 2em;
}}
td {{
padding: 3px 7px;
text-align: center;
}}
td:first-child {{
text-align: end;
}}
th {{
background: #ff9900;
color: #000;
font-size: 1.2em;
padding: 7px 7px;
}}
</style>
</head>
</body>
<h1>{title}</h1>
<article>
""")
# top 20
add_audio_table(f, html_folder, results[:-21: -1], "Top 20", metric)
# 20 around median
N = len(results) // 2
add_audio_table(f, html_folder, results[N + 10 : N - 10: -1], "Median 20", metric)
# flop 20
add_audio_table(f, html_folder, results[:20], "Flop 20", metric)
# footer
f.write("""
</article>
</body>
</html>
""")
metric_sorting_signs = {
'pesq' : 1,
'pitch_error' : -1,
'voicing_error' : -1
}
def is_valid_result(data, metrics):
if not isinstance(data, dict):
return False
for metric in metrics:
if not metric in data:
return False
return True
def evaluate_results(output_folder, results, metric):
results = sorted(results, key=lambda x : metric_sorting_signs[metric] * x[1])
with open(os.path.join(args.output_folder, f'scores_{metric}.txt'), 'w') as f:
for result in results:
f.write(f"{os.path.relpath(result[0], args.output_folder)} {result[1]}\n")
# some statistics
mean = sum([r[1] for r in results]) / len(results)
top_mean = sum([r[1] for r in results[-20:]]) / 20
bottom_mean = sum([r[1] for r in results[:20]]) / 20
with open(os.path.join(args.output_folder, f'stats_{metric}.txt'), 'w') as f:
f.write(f"mean score: {mean}\n")
f.write(f"bottom mean score: {bottom_mean}\n")
f.write(f"top mean score: {top_mean}\n")
print(f"\nmean score: {mean}")
print(f"bottom mean score: {bottom_mean}")
print(f"top mean score: {top_mean}\n")
# create output html
create_html(os.path.join(output_folder, 'html', metric), results, setup['test'], metric)
if __name__ == "__main__":
args = parser.parse_args()
# check for sox
if not check_for_sox_in_path():
raise RuntimeError("script requires sox")
# prepare output folder
if os.path.exists(args.output_folder):
print("warning: output folder exists")
reply = input('continue? (y/n): ')
while reply not in {'y', 'n'}:
reply = input('continue? (y/n): ')
if reply == 'n':
os._exit()
else:
# start with a clean sleight
shutil.rmtree(args.output_folder)
os.makedirs(args.output_folder, exist_ok=True)
# extract metrics
metrics = args.metrics.split(",")
for metric in metrics:
if not metric in metric_sorting_signs:
print(f"unknown metric {metric}")
args.usage()
# read setup
print(f"loading {args.setup}...")
with open(args.setup, "r") as f:
setup = yaml.load(f.read(), yaml.FullLoader)
model_commands = setup['processing']
print("\nfound the following model commands:")
for command in model_commands:
print(command.format(INPUT='input.wav', OUTPUT='output.wav', PLCFILE='input_is_lost.txt'))
# store setup to output folder
setup['input'] = os.path.abspath(args.input_folder)
setup['output'] = os.path.abspath(args.output_folder)
setup['seed'] = args.seed
with open(os.path.join(args.output_folder, 'setup.yml'), 'w') as f:
yaml.dump(setup, f)
# get input
print(f"\nCollecting audio files from {args.input_folder}...")
file_list = get_wave_file_list(args.input_folder, check_for_features=False)
print(f"...{len(file_list)} files found\n")
# sample from file list
file_list = sorted(file_list)
random.seed(args.seed)
random.shuffle(file_list)
num_testitems = min(args.num_testitems, len(file_list))
file_list = file_list[:num_testitems]
print(f"\nlaunching test on {num_testitems} items...")
# helper function for parallel processing
def func(input_path):
output_path = get_output_path(args.input_folder, input_path, args.output_folder)
try:
rval = run_processing_chain(input_path, output_path, model_commands, args.fs, metrics=metrics, plc_suffix=args.plc_suffix, verbose=args.verbose)
except:
rval = (input_path, -1)
return rval
with multiprocessing.Pool(args.num_workers) as p:
results = p.map(func, file_list)
results_dict = dict()
for name, values in results:
if is_valid_result(values, metrics):
results_dict[name] = values
print(results_dict)
# evaluating results
num_failures = num_testitems - len(results_dict)
print(f"\nprocessing of {num_failures} items failed\n")
for metric in metrics:
print(metric)
evaluate_results(
args.output_folder,
[(name, value[metric]) for name, value in results_dict.items()],
metric
)