opus/dnn/torch/osce/utils/spec.py
Jan Buethe 2f290d32ed
added more enhancement stuff
Signed-off-by: Jan Buethe <jbuethe@amazon.de>
2023-09-12 14:50:24 +02:00

209 lines
No EOL
6.2 KiB
Python

"""
/* Copyright (c) 2023 Amazon
Written by Jan Buethe */
/*
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
"""
import math as m
import numpy as np
import scipy
import torch
def erb(f):
return 24.7 * (4.37 * f + 1)
def inv_erb(e):
return (e / 24.7 - 1) / 4.37
def bark(f):
return 6 * m.asinh(f/600)
def inv_bark(b):
return 600 * m.sinh(b / 6)
scale_dict = {
'bark': [bark, inv_bark],
'erb': [erb, inv_erb]
}
def gen_filterbank(N, Fs=16000, keep_size=False):
in_freq = (np.arange(N+1, dtype='float32')/N*Fs/2)[None,:]
M = N + 1 if keep_size else N
out_freq = (np.arange(M, dtype='float32')/N*Fs/2)[:,None]
#ERB from B.C.J Moore, An Introduction to the Psychology of Hearing, 5th Ed., page 73.
ERB_N = 24.7 + .108*in_freq
delta = np.abs(in_freq-out_freq)/ERB_N
center = (delta<.5).astype('float32')
R = -12*center*delta**2 + (1-center)*(3-12*delta)
RE = 10.**(R/10.)
norm = np.sum(RE, axis=1)
RE = RE/norm[:, np.newaxis]
return torch.from_numpy(RE)
def create_filter_bank(num_bands, n_fft=320, fs=16000, scale='bark', round_center_bins=False, return_upper=False, normalize=False):
f0 = 0
num_bins = n_fft // 2 + 1
f1 = fs / n_fft * (num_bins - 1)
fstep = fs / n_fft
if scale == 'opus':
bins_5ms = [0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 20, 24, 28, 34, 40]
fac = 1000 * n_fft / fs / 5
if num_bands != 18:
print("warning: requested Opus filter bank with num_bands != 18. Adjusting num_bands.")
num_bands = 18
center_bins = np.array([fac * bin for bin in bins_5ms])
else:
to_scale, from_scale = scale_dict[scale]
s0 = to_scale(f0)
s1 = to_scale(f1)
center_freqs = np.array([f0] + [from_scale(s0 + i * (s1 - s0) / (num_bands)) for i in range(1, num_bands - 1)] + [f1])
center_bins = (center_freqs - f0) / fstep
if round_center_bins:
center_bins = np.round(center_bins)
filter_bank = np.zeros((num_bands, num_bins))
band = 0
for bin in range(num_bins):
# update band index
if bin > center_bins[band + 1]:
band += 1
# calculate filter coefficients
frac = (center_bins[band + 1] - bin) / (center_bins[band + 1] - center_bins[band])
filter_bank[band][bin] = frac
filter_bank[band + 1][bin] = 1 - frac
if return_upper:
extend = n_fft - num_bins
filter_bank = np.concatenate((filter_bank, np.fliplr(filter_bank[:, 1:extend+1])), axis=1)
if normalize:
filter_bank = filter_bank / np.sum(filter_bank, axis=1).reshape(-1, 1)
return filter_bank
def compressed_log_spec(pspec):
lpspec = np.zeros_like(pspec)
num_bands = pspec.shape[-1]
log_max = -2
follow = -2
for i in range(num_bands):
tmp = np.log10(pspec[i] + 1e-9)
tmp = max(log_max, max(follow - 2.5, tmp))
lpspec[i] = tmp
log_max = max(log_max, tmp)
follow = max(follow - 2.5, tmp)
return lpspec
def log_spectrum_from_lpc(a, fb=None, n_fft=320, eps=1e-9, gamma=1, compress=False, power=1):
""" calculates cepstrum from SILK lpcs """
order = a.shape[-1]
assert order + 1 < n_fft
a = a * (gamma ** (1 + np.arange(order))).astype(np.float32)
x = np.zeros((*a.shape[:-1], n_fft ))
x[..., 0] = 1
x[..., 1:1 + order] = -a
X = np.fft.fft(x, axis=-1)
X = np.abs(X[..., :n_fft//2 + 1]) ** power
S = 1 / (X + eps)
if fb is None:
Sf = S
else:
Sf = np.matmul(S, fb.T)
if compress:
Sf = np.apply_along_axis(compressed_log_spec, -1, Sf)
else:
Sf = np.log(Sf + eps)
return Sf
def cepstrum_from_lpc(a, fb=None, n_fft=320, eps=1e-9, gamma=1, compress=False):
""" calculates cepstrum from SILK lpcs """
Sf = log_spectrum_from_lpc(a, fb, n_fft, eps, gamma, compress)
cepstrum = scipy.fftpack.dct(Sf, 2, norm='ortho')
return cepstrum
def log_spectrum(x, frame_size, fb=None, window=None, power=1):
""" calculate cepstrum on 50% overlapping frames """
assert(2*len(x)) % frame_size == 0
assert frame_size % 2 == 0
n = len(x)
num_even = n // frame_size
num_odd = (n - frame_size // 2) // frame_size
num_bins = frame_size // 2 + 1
x_even = x[:num_even * frame_size].reshape(-1, frame_size)
x_odd = x[frame_size//2 : frame_size//2 + frame_size * num_odd].reshape(-1, frame_size)
x_unfold = np.empty((x_even.size + x_odd.size), dtype=x.dtype).reshape((-1, frame_size))
x_unfold[::2, :] = x_even
x_unfold[1::2, :] = x_odd
if window is not None:
x_unfold *= window.reshape(1, -1)
X = np.abs(np.fft.fft(x_unfold, n=frame_size, axis=-1))[:, :num_bins] ** power
if fb is not None:
X = np.matmul(X, fb.T)
return np.log(X + 1e-9)
def cepstrum(x, frame_size, fb=None, window=None):
""" calculate cepstrum on 50% overlapping frames """
X = log_spectrum(x, frame_size, fb, window)
cepstrum = scipy.fftpack.dct(X, 2, norm='ortho')
return cepstrum