opus/dnn/torch/osce/utils/layers/td_shaper.py
Jan Buethe 2f290d32ed
added more enhancement stuff
Signed-off-by: Jan Buethe <jbuethe@amazon.de>
2023-09-12 14:50:24 +02:00

135 lines
4 KiB
Python

import torch
from torch import nn
import torch.nn.functional as F
from utils.complexity import _conv1d_flop_count
class TDShaper(nn.Module):
COUNTER = 1
def __init__(self,
feature_dim,
frame_size=160,
avg_pool_k=4,
innovate=False,
pool_after=False
):
"""
Parameters:
-----------
feature_dim : int
dimension of input features
frame_size : int
frame size
avg_pool_k : int, optional
kernel size and stride for avg pooling
padding : List[int, int]
"""
super().__init__()
self.feature_dim = feature_dim
self.frame_size = frame_size
self.avg_pool_k = avg_pool_k
self.innovate = innovate
self.pool_after = pool_after
assert frame_size % avg_pool_k == 0
self.env_dim = frame_size // avg_pool_k + 1
# feature transform
self.feature_alpha1 = nn.Conv1d(self.feature_dim + self.env_dim, frame_size, 2)
self.feature_alpha2 = nn.Conv1d(frame_size, frame_size, 2)
if self.innovate:
self.feature_alpha1b = nn.Conv1d(self.feature_dim + self.env_dim, frame_size, 2)
self.feature_alpha1c = nn.Conv1d(self.feature_dim + self.env_dim, frame_size, 2)
self.feature_alpha2b = nn.Conv1d(frame_size, frame_size, 2)
self.feature_alpha2c = nn.Conv1d(frame_size, frame_size, 2)
def flop_count(self, rate):
frame_rate = rate / self.frame_size
shape_flops = sum([_conv1d_flop_count(x, frame_rate) for x in (self.feature_alpha1, self.feature_alpha2)]) + 11 * frame_rate * self.frame_size
if self.innovate:
inno_flops = sum([_conv1d_flop_count(x, frame_rate) for x in (self.feature_alpha1b, self.feature_alpha2b, self.feature_alpha1c, self.feature_alpha2c)]) + 22 * frame_rate * self.frame_size
else:
inno_flops = 0
return shape_flops + inno_flops
def envelope_transform(self, x):
x = torch.abs(x)
if self.pool_after:
x = torch.log(x + .5**16)
x = F.avg_pool1d(x, self.avg_pool_k, self.avg_pool_k)
else:
x = F.avg_pool1d(x, self.avg_pool_k, self.avg_pool_k)
x = torch.log(x + .5**16)
x = x.reshape(x.size(0), -1, self.env_dim - 1)
avg_x = torch.mean(x, -1, keepdim=True)
x = torch.cat((x - avg_x, avg_x), dim=-1)
return x
def forward(self, x, features, debug=False):
""" innovate signal parts with temporal shaping
Parameters:
-----------
x : torch.tensor
input signal of shape (batch_size, 1, num_samples)
features : torch.tensor
frame-wise features of shape (batch_size, num_frames, feature_dim)
"""
batch_size = x.size(0)
num_frames = features.size(1)
num_samples = x.size(2)
frame_size = self.frame_size
# generate temporal envelope
tenv = self.envelope_transform(x)
# feature path
f = torch.cat((features, tenv), dim=-1)
f = F.pad(f.permute(0, 2, 1), [1, 0])
alpha = F.leaky_relu(self.feature_alpha1(f), 0.2)
alpha = torch.exp(self.feature_alpha2(F.pad(alpha, [1, 0])))
alpha = alpha.permute(0, 2, 1)
if self.innovate:
inno_alpha = F.leaky_relu(self.feature_alpha1b(f), 0.2)
inno_alpha = torch.exp(self.feature_alpha2b(F.pad(inno_alpha, [1, 0])))
inno_alpha = inno_alpha.permute(0, 2, 1)
inno_x = F.leaky_relu(self.feature_alpha1c(f), 0.2)
inno_x = torch.tanh(self.feature_alpha2c(F.pad(inno_x, [1, 0])))
inno_x = inno_x.permute(0, 2, 1)
# signal path
y = x.reshape(batch_size, num_frames, -1)
y = alpha * y
if self.innovate:
y = y + inno_alpha * inno_x
return y.reshape(batch_size, 1, num_samples)