opus/dnn/torch/osce/utils/layers/silk_upsampler.py
Jan Buethe 2f290d32ed
added more enhancement stuff
Signed-off-by: Jan Buethe <jbuethe@amazon.de>
2023-09-12 14:50:24 +02:00

167 lines
5.8 KiB
Python

"""
/* Copyright (c) 2023 Amazon
Written by Jan Buethe */
/*
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
"""
""" This module implements the SILK upsampler from 16kHz to 24 or 48 kHz """
import torch
from torch import nn
import torch.nn.functional as F
import numpy as np
frac_fir = np.array(
[
[189, -600, 617, 30567, 2996, -1375, 425, -46],
[117, -159, -1070, 29704, 5784, -2143, 611, -71],
[52, 221, -2392, 28276, 8798, -2865, 773, -91],
[-4, 529, -3350, 26341, 11950, -3487, 896, -103],
[-48, 758, -3956, 23973, 15143, -3957, 967, -107],
[-80, 905, -4235, 21254, 18278, -4222, 972, -99],
[-99, 972, -4222, 18278, 21254, -4235, 905, -80],
[-107, 967, -3957, 15143, 23973, -3956, 758, -48],
[-103, 896, -3487, 11950, 26341, -3350, 529, -4],
[-91, 773, -2865, 8798, 28276, -2392, 221, 52],
[-71, 611, -2143, 5784, 29704, -1070, -159, 117],
[-46, 425, -1375, 2996, 30567, 617, -600, 189]
],
dtype=np.float32
) / 2**15
hq_2x_up_c_even = [x / 2**16 for x in [1746, 14986, 39083 - 65536]]
hq_2x_up_c_odd = [x / 2**16 for x in [6854, 25769, 55542 - 65536]]
def get_impz(coeffs, n):
s = 3*[0]
y = np.zeros(n)
x = 1
for i in range(n):
Y = x - s[0]
X = Y * coeffs[0]
tmp1 = s[0] + X
s[0] = x + X
Y = tmp1 - s[1]
X = Y * coeffs[1]
tmp2 = s[1] + X
s[1] = tmp1 + X
Y = tmp2 - s[2]
X = Y * (1 + coeffs[2])
tmp3 = s[2] + X
s[2] = tmp2 + X
y[i] = tmp3
x = 0
return y
class SilkUpsampler(nn.Module):
SUPPORTED_TARGET_RATES = {24000, 48000}
SUPPORTED_SOURCE_RATES = {16000}
def __init__(self,
fs_in=16000,
fs_out=48000):
super().__init__()
self.fs_in = fs_in
self.fs_out = fs_out
if fs_in not in self.SUPPORTED_SOURCE_RATES:
raise ValueError(f'SilkUpsampler currently only supports upsampling from {self.SUPPORTED_SOURCE_RATES} Hz')
if fs_out not in self.SUPPORTED_TARGET_RATES:
raise ValueError(f'SilkUpsampler currently only supports upsampling to {self.SUPPORTED_TARGET_RATES} Hz')
# hq 2x upsampler as FIR approximation
hq_2x_up_even = get_impz(hq_2x_up_c_even, 128)[::-1].copy()
hq_2x_up_odd = get_impz(hq_2x_up_c_odd , 128)[::-1].copy()
self.hq_2x_up_even = nn.Parameter(torch.from_numpy(hq_2x_up_even).float().view(1, 1, -1), requires_grad=False)
self.hq_2x_up_odd = nn.Parameter(torch.from_numpy(hq_2x_up_odd ).float().view(1, 1, -1), requires_grad=False)
self.hq_2x_up_padding = [127, 0]
# interpolation filters
frac_01_24 = frac_fir[0]
frac_17_24 = frac_fir[8]
frac_09_24 = frac_fir[4]
self.frac_01_24 = nn.Parameter(torch.from_numpy(frac_01_24).view(1, 1, -1), requires_grad=False)
self.frac_17_24 = nn.Parameter(torch.from_numpy(frac_17_24).view(1, 1, -1), requires_grad=False)
self.frac_09_24 = nn.Parameter(torch.from_numpy(frac_09_24).view(1, 1, -1), requires_grad=False)
self.stride = 1 if fs_out == 48000 else 2
def hq_2x_up(self, x):
num_channels = x.size(1)
weight_even = torch.repeat_interleave(self.hq_2x_up_even, num_channels, 0)
weight_odd = torch.repeat_interleave(self.hq_2x_up_odd , num_channels, 0)
x_pad = F.pad(x, self.hq_2x_up_padding)
y_even = F.conv1d(x_pad, weight_even, groups=num_channels)
y_odd = F.conv1d(x_pad, weight_odd , groups=num_channels)
y = torch.cat((y_even.unsqueeze(-1), y_odd.unsqueeze(-1)), dim=-1).flatten(2)
return y
def interpolate_3_2(self, x):
num_channels = x.size(1)
weight_01_24 = torch.repeat_interleave(self.frac_01_24, num_channels, 0)
weight_17_24 = torch.repeat_interleave(self.frac_17_24, num_channels, 0)
weight_09_24 = torch.repeat_interleave(self.frac_09_24, num_channels, 0)
x_pad = F.pad(x, [8, 0])
y_01_24 = F.conv1d(x_pad, weight_01_24, stride=2, groups=num_channels)
y_17_24 = F.conv1d(x_pad, weight_17_24, stride=2, groups=num_channels)
y_09_24_sh1 = F.conv1d(torch.roll(x_pad, -1, -1), weight_09_24, stride=2, groups=num_channels)
y = torch.cat(
(y_01_24.unsqueeze(-1), y_17_24.unsqueeze(-1), y_09_24_sh1.unsqueeze(-1)),
dim=-1).flatten(2)
return y[..., :-3]
def forward(self, x):
y_2x = self.hq_2x_up(x)
y_3x = self.interpolate_3_2(y_2x)
return y_3x[:, :, ::self.stride]