opus/dnn/torch/fargan/fargan.py
Jan Buethe 82f48d368b
removed trailing whitespace in fargan
Signed-off-by: Jan Buethe <jbuethe@amazon.de>
2023-09-13 16:57:28 +02:00

285 lines
11 KiB
Python

import numpy as np
import torch
from torch import nn
import torch.nn.functional as F
import filters
from torch.nn.utils import weight_norm
Fs = 16000
fid_dict = {}
def dump_signal(x, filename):
return
if filename in fid_dict:
fid = fid_dict[filename]
else:
fid = open(filename, "w")
fid_dict[filename] = fid
x = x.detach().numpy().astype('float32')
x.tofile(fid)
def sig_l1(y_true, y_pred):
return torch.mean(abs(y_true-y_pred))/torch.mean(abs(y_true))
def sig_loss(y_true, y_pred):
t = y_true/(1e-15+torch.norm(y_true, dim=-1, p=2, keepdim=True))
p = y_pred/(1e-15+torch.norm(y_pred, dim=-1, p=2, keepdim=True))
return torch.mean(1.-torch.sum(p*t, dim=-1))
def analysis_filter(x, lpc, nb_subframes=4, subframe_size=40, gamma=.9):
device = x.device
batch_size = lpc.size(0)
nb_frames = lpc.shape[1]
sig = torch.zeros(batch_size, subframe_size+16, device=device)
x = torch.reshape(x, (batch_size, nb_frames*nb_subframes, subframe_size))
out = torch.zeros((batch_size, 0), device=device)
if gamma is not None:
bw = gamma**(torch.arange(1, 17, device=device))
lpc = lpc*bw[None,None,:]
ones = torch.ones((*(lpc.shape[:-1]), 1), device=device)
zeros = torch.zeros((*(lpc.shape[:-1]), subframe_size-1), device=device)
a = torch.cat([ones, lpc], -1)
a_big = torch.cat([a, zeros], -1)
fir_mat_big = filters.toeplitz_from_filter(a_big)
#print(a_big[:,0,:])
for n in range(nb_frames):
for k in range(nb_subframes):
sig = torch.cat([sig[:,subframe_size:], x[:,n*nb_subframes + k, :]], 1)
exc = torch.bmm(fir_mat_big[:,n,:,:], sig[:,:,None])
out = torch.cat([out, exc[:,-subframe_size:,0]], 1)
return out
# weight initialization and clipping
def init_weights(module):
if isinstance(module, nn.GRU):
for p in module.named_parameters():
if p[0].startswith('weight_hh_'):
nn.init.orthogonal_(p[1])
def gen_phase_embedding(periods, frame_size):
device = periods.device
batch_size = periods.size(0)
nb_frames = periods.size(1)
w0 = 2*torch.pi/periods
w0_shift = torch.cat([2*torch.pi*torch.rand((batch_size, 1), device=device)/frame_size, w0[:,:-1]], 1)
cum_phase = frame_size*torch.cumsum(w0_shift, 1)
fine_phase = w0[:,:,None]*torch.broadcast_to(torch.arange(frame_size, device=device), (batch_size, nb_frames, frame_size))
embed = torch.unsqueeze(cum_phase, 2) + fine_phase
embed = torch.reshape(embed, (batch_size, -1))
return torch.cos(embed), torch.sin(embed)
class GLU(nn.Module):
def __init__(self, feat_size):
super(GLU, self).__init__()
torch.manual_seed(5)
self.gate = weight_norm(nn.Linear(feat_size, feat_size, bias=False))
self.init_weights()
def init_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv1d) or isinstance(m, nn.ConvTranspose1d)\
or isinstance(m, nn.Linear) or isinstance(m, nn.Embedding):
nn.init.orthogonal_(m.weight.data)
def forward(self, x):
out = x * torch.sigmoid(self.gate(x))
return out
class FWConv(nn.Module):
def __init__(self, in_size, out_size, kernel_size=3):
super(FWConv, self).__init__()
torch.manual_seed(5)
self.in_size = in_size
self.kernel_size = kernel_size
self.conv = weight_norm(nn.Linear(in_size*self.kernel_size, out_size, bias=False))
self.glu = GLU(out_size)
self.init_weights()
def init_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv1d) or isinstance(m, nn.ConvTranspose1d)\
or isinstance(m, nn.Linear) or isinstance(m, nn.Embedding):
nn.init.orthogonal_(m.weight.data)
def forward(self, x, state):
xcat = torch.cat((state, x), -1)
#print(x.shape, state.shape, xcat.shape, self.in_size, self.kernel_size)
out = self.glu(torch.tanh(self.conv(xcat)))
return out, xcat[:,self.in_size:]
class FARGANCond(nn.Module):
def __init__(self, feature_dim=20, cond_size=256, pembed_dims=64):
super(FARGANCond, self).__init__()
self.feature_dim = feature_dim
self.cond_size = cond_size
self.pembed = nn.Embedding(256, pembed_dims)
self.fdense1 = nn.Linear(self.feature_dim + pembed_dims, self.cond_size, bias=False)
self.fconv1 = nn.Conv1d(self.cond_size, self.cond_size, kernel_size=3, padding='valid', bias=False)
self.fconv2 = nn.Conv1d(self.cond_size, self.cond_size, kernel_size=3, padding='valid', bias=False)
self.fdense2 = nn.Linear(self.cond_size, 80*4, bias=False)
self.apply(init_weights)
def forward(self, features, period):
p = self.pembed(period)
features = torch.cat((features, p), -1)
tmp = torch.tanh(self.fdense1(features))
tmp = tmp.permute(0, 2, 1)
tmp = torch.tanh(self.fconv1(tmp))
tmp = torch.tanh(self.fconv2(tmp))
tmp = tmp.permute(0, 2, 1)
tmp = torch.tanh(self.fdense2(tmp))
return tmp
class FARGANSub(nn.Module):
def __init__(self, subframe_size=40, nb_subframes=4, cond_size=256):
super(FARGANSub, self).__init__()
self.subframe_size = subframe_size
self.nb_subframes = nb_subframes
self.cond_size = cond_size
#self.sig_dense1 = nn.Linear(4*self.subframe_size+self.passthrough_size+self.cond_size, self.cond_size, bias=False)
self.fwc0 = FWConv(4*self.subframe_size+80, self.cond_size)
self.sig_dense2 = nn.Linear(self.cond_size, self.cond_size, bias=False)
self.gru1 = nn.GRUCell(self.cond_size, self.cond_size, bias=False)
self.gru2 = nn.GRUCell(self.cond_size, self.cond_size, bias=False)
self.gru3 = nn.GRUCell(self.cond_size, self.cond_size, bias=False)
self.dense1_glu = GLU(self.cond_size)
self.dense2_glu = GLU(self.cond_size)
self.gru1_glu = GLU(self.cond_size)
self.gru2_glu = GLU(self.cond_size)
self.gru3_glu = GLU(self.cond_size)
self.ptaps_dense = nn.Linear(4*self.cond_size, 5)
self.sig_dense_out = nn.Linear(4*self.cond_size, self.subframe_size, bias=False)
self.gain_dense_out = nn.Linear(4*self.cond_size, 1)
self.apply(init_weights)
def forward(self, cond, prev, exc_mem, phase, period, states, gain=None):
device = exc_mem.device
#print(cond.shape, prev.shape)
dump_signal(prev, 'prev_in.f32')
idx = 256-torch.clamp(period[:,None], min=self.subframe_size+2, max=254)
rng = torch.arange(self.subframe_size+4, device=device)
idx = idx + rng[None,:] - 2
pred = torch.gather(exc_mem, 1, idx)
pred = pred/(1e-5+gain)
prev = prev/(1e-5+gain)
dump_signal(prev, 'pitch_exc.f32')
dump_signal(exc_mem, 'exc_mem.f32')
tmp = torch.cat((cond, pred[:,2:-2], prev, phase), 1)
#tmp = self.dense1_glu(torch.tanh(self.sig_dense1(tmp)))
fwc0_out, fwc0_state = self.fwc0(tmp, states[3])
dense2_out = self.dense2_glu(torch.tanh(self.sig_dense2(fwc0_out)))
gru1_state = self.gru1(dense2_out, states[0])
gru1_out = self.gru1_glu(gru1_state)
gru2_state = self.gru2(gru1_out, states[1])
gru2_out = self.gru2_glu(gru2_state)
gru3_state = self.gru3(gru2_out, states[2])
gru3_out = self.gru3_glu(gru3_state)
gru3_out = torch.cat([gru1_out, gru2_out, gru3_out, dense2_out], 1)
sig_out = torch.tanh(self.sig_dense_out(gru3_out))
dump_signal(sig_out, 'exc_out.f32')
taps = self.ptaps_dense(gru3_out)
taps = .2*taps + torch.exp(taps)
taps = taps / (1e-2 + torch.sum(torch.abs(taps), dim=-1, keepdim=True))
dump_signal(taps, 'taps.f32')
#fpitch = taps[:,0:1]*pred[:,:-4] + taps[:,1:2]*pred[:,1:-3] + taps[:,2:3]*pred[:,2:-2] + taps[:,3:4]*pred[:,3:-1] + taps[:,4:]*pred[:,4:]
fpitch = pred[:,2:-2]
pitch_gain = torch.exp(self.gain_dense_out(gru3_out))
dump_signal(pitch_gain, 'pgain.f32')
sig_out = (sig_out + pitch_gain*fpitch) * gain
exc_mem = torch.cat([exc_mem[:,self.subframe_size:], sig_out], 1)
dump_signal(sig_out, 'sig_out.f32')
return sig_out, exc_mem, (gru1_state, gru2_state, gru3_state, fwc0_state)
class FARGAN(nn.Module):
def __init__(self, subframe_size=40, nb_subframes=4, feature_dim=20, cond_size=256, passthrough_size=0, has_gain=False, gamma=None):
super(FARGAN, self).__init__()
self.subframe_size = subframe_size
self.nb_subframes = nb_subframes
self.frame_size = self.subframe_size*self.nb_subframes
self.feature_dim = feature_dim
self.cond_size = cond_size
self.cond_net = FARGANCond(feature_dim=feature_dim, cond_size=cond_size)
self.sig_net = FARGANSub(subframe_size=subframe_size, nb_subframes=nb_subframes, cond_size=cond_size)
def forward(self, features, period, nb_frames, pre=None, states=None):
device = features.device
batch_size = features.size(0)
phase_real, phase_imag = gen_phase_embedding(period[:, 3:-1], self.frame_size)
#np.round(32000*phase.detach().numpy()).astype('int16').tofile('phase.sw')
prev = torch.zeros(batch_size, self.subframe_size, device=device)
exc_mem = torch.zeros(batch_size, 256, device=device)
nb_pre_frames = pre.size(1)//self.frame_size if pre is not None else 0
states = (
torch.zeros(batch_size, self.cond_size, device=device),
torch.zeros(batch_size, self.cond_size, device=device),
torch.zeros(batch_size, self.cond_size, device=device),
torch.zeros(batch_size, (4*self.subframe_size+80)*2, device=device)
)
sig = torch.zeros((batch_size, 0), device=device)
cond = self.cond_net(features, period)
if pre is not None:
prev[:,:] = pre[:, self.frame_size-self.subframe_size : self.frame_size]
exc_mem[:,-self.frame_size:] = pre[:, :self.frame_size]
start = 1 if nb_pre_frames>0 else 0
for n in range(start, nb_frames+nb_pre_frames):
for k in range(self.nb_subframes):
pos = n*self.frame_size + k*self.subframe_size
preal = phase_real[:, pos:pos+self.subframe_size]
pimag = phase_imag[:, pos:pos+self.subframe_size]
phase = torch.cat([preal, pimag], 1)
#print("now: ", preal.shape, prev.shape, sig_in.shape)
pitch = period[:, 3+n]
gain = .03*10**(0.5*features[:, 3+n, 0:1]/np.sqrt(18.0))
#gain = gain[:,:,None]
out, exc_mem, states = self.sig_net(cond[:, n, k*80:(k+1)*80], prev, exc_mem, phase, pitch, states, gain=gain)
if n < nb_pre_frames:
out = pre[:, pos:pos+self.subframe_size]
exc_mem[:,-self.subframe_size:] = out
else:
sig = torch.cat([sig, out], 1)
prev = out
states = [s.detach() for s in states]
return sig, states