opus/dnn/torch/fargan/adv_train_fargan.py
2023-09-26 21:42:01 +02:00

260 lines
9.7 KiB
Python

import os
import argparse
import random
import numpy as np
import sys
import math as m
import torch
from torch import nn
import torch.nn.functional as F
import tqdm
import fargan
from dataset import FARGANDataset
from stft_loss import *
source_dir = os.path.split(os.path.abspath(__file__))[0]
sys.path.append(os.path.join(source_dir, "../osce/"))
import models as osce_models
def fmap_loss(scores_real, scores_gen):
num_discs = len(scores_real)
loss_feat = 0
for k in range(num_discs):
num_layers = len(scores_gen[k]) - 1
f = 4 / num_discs / num_layers
for l in range(num_layers):
loss_feat += f * F.l1_loss(scores_gen[k][l], scores_real[k][l].detach())
return loss_feat
parser = argparse.ArgumentParser()
parser.add_argument('features', type=str, help='path to feature file in .f32 format')
parser.add_argument('signal', type=str, help='path to signal file in .s16 format')
parser.add_argument('output', type=str, help='path to output folder')
parser.add_argument('--suffix', type=str, help="model name suffix", default="")
parser.add_argument('--cuda-visible-devices', type=str, help="comma separates list of cuda visible device indices, default: CUDA_VISIBLE_DEVICES", default=None)
model_group = parser.add_argument_group(title="model parameters")
model_group.add_argument('--cond-size', type=int, help="first conditioning size, default: 256", default=256)
model_group.add_argument('--gamma', type=float, help="Use A(z/gamma), default: 0.9", default=0.9)
training_group = parser.add_argument_group(title="training parameters")
training_group.add_argument('--batch-size', type=int, help="batch size, default: 128", default=128)
training_group.add_argument('--lr', type=float, help='learning rate, default: 5e-4', default=5e-4)
training_group.add_argument('--epochs', type=int, help='number of training epochs, default: 50', default=50)
training_group.add_argument('--sequence-length', type=int, help='sequence length, default: 60', default=60)
training_group.add_argument('--lr-decay', type=float, help='learning rate decay factor, default: 0.0', default=0.0)
training_group.add_argument('--initial-checkpoint', type=str, help='initial checkpoint to start training from, default: None', default=None)
training_group.add_argument('--reg-weight', type=float, help='regression loss weight, default: 1.0', default=1.0)
training_group.add_argument('--fmap-weight', type=float, help='feature matchin loss weight, default: 1.0', default=1.)
args = parser.parse_args()
if args.cuda_visible_devices != None:
os.environ['CUDA_VISIBLE_DEVICES'] = args.cuda_visible_devices
# checkpoints
checkpoint_dir = os.path.join(args.output, 'checkpoints')
checkpoint = dict()
os.makedirs(checkpoint_dir, exist_ok=True)
# training parameters
batch_size = args.batch_size
lr = args.lr
epochs = args.epochs
sequence_length = args.sequence_length
lr_decay = args.lr_decay
adam_betas = [0.8, 0.99]
adam_eps = 1e-8
features_file = args.features
signal_file = args.signal
# model parameters
cond_size = args.cond_size
checkpoint['batch_size'] = batch_size
checkpoint['lr'] = lr
checkpoint['lr_decay'] = lr_decay
checkpoint['epochs'] = epochs
checkpoint['sequence_length'] = sequence_length
checkpoint['adam_betas'] = adam_betas
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
checkpoint['model_args'] = ()
checkpoint['model_kwargs'] = {'cond_size': cond_size, 'gamma': args.gamma}
print(checkpoint['model_kwargs'])
model = fargan.FARGAN(*checkpoint['model_args'], **checkpoint['model_kwargs'])
#discriminator
disc_name = 'fdmresdisc'
disc = osce_models.model_dict[disc_name](
architecture='free',
design='f_down',
fft_sizes_16k=[2**n for n in range(6, 12)],
freq_roi=[0, 7400],
max_channels=256,
noise_gain=0.0
)
if type(args.initial_checkpoint) != type(None):
checkpoint = torch.load(args.initial_checkpoint, map_location='cpu')
model.load_state_dict(checkpoint['state_dict'], strict=False)
checkpoint['state_dict'] = model.state_dict()
dataset = FARGANDataset(features_file, signal_file, sequence_length=sequence_length)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=True, drop_last=True, num_workers=4)
optimizer = torch.optim.AdamW(model.parameters(), lr=lr, betas=adam_betas, eps=adam_eps)
optimizer_disc = torch.optim.AdamW([p for p in disc.parameters() if p.requires_grad], lr=lr, betas=adam_betas, eps=adam_eps)
# learning rate scheduler
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer=optimizer, lr_lambda=lambda x : 1 / (1 + lr_decay * x))
scheduler_disc = torch.optim.lr_scheduler.LambdaLR(optimizer=optimizer_disc, lr_lambda=lambda x : 1 / (1 + lr_decay * x))
states = None
spect_loss = MultiResolutionSTFTLoss(device).to(device)
if __name__ == '__main__':
model.to(device)
disc.to(device)
for epoch in range(1, epochs + 1):
m_r = 0
m_f = 0
s_r = 1
s_f = 1
running_cont_loss = 0
running_disc_loss = 0
running_gen_loss = 0
running_fmap_loss = 0
running_reg_loss = 0
running_wc = 0
print(f"training epoch {epoch}...")
with tqdm.tqdm(dataloader, unit='batch') as tepoch:
for i, (features, periods, target, lpc) in enumerate(tepoch):
optimizer.zero_grad()
features = features.to(device)
lpc = lpc.to(device)
periods = periods.to(device)
if True:
target = target[:, :sequence_length*160]
lpc = lpc[:,:sequence_length,:]
features = features[:,:sequence_length+4,:]
periods = periods[:,:sequence_length+4]
else:
target=target[::2, :]
lpc=lpc[::2,:]
features=features[::2,:]
periods=periods[::2,:]
target = target.to(device)
target = fargan.analysis_filter(target, lpc[:,:,:], gamma=args.gamma)
#nb_pre = random.randrange(1, 6)
nb_pre = 2
pre = target[:, :nb_pre*160]
output, _ = model(features, periods, target.size(1)//160 - nb_pre, pre=pre, states=None)
output = torch.cat([pre, output], -1)
# discriminator update
scores_gen = disc(output.detach().unsqueeze(1))
scores_real = disc(target.unsqueeze(1))
disc_loss = 0
for scale in scores_gen:
disc_loss += ((scale[-1]) ** 2).mean()
m_f = 0.9 * m_f + 0.1 * scale[-1].detach().mean().cpu().item()
s_f = 0.9 * s_f + 0.1 * scale[-1].detach().std().cpu().item()
for scale in scores_real:
disc_loss += ((1 - scale[-1]) ** 2).mean()
m_r = 0.9 * m_r + 0.1 * scale[-1].detach().mean().cpu().item()
s_r = 0.9 * s_r + 0.1 * scale[-1].detach().std().cpu().item()
disc_loss = 0.5 * disc_loss / len(scores_gen)
winning_chance = 0.5 * m.erfc( (m_r - m_f) / m.sqrt(2 * (s_f**2 + s_r**2)) )
running_wc += winning_chance
disc.zero_grad()
disc_loss.backward()
optimizer_disc.step()
# model update
scores_gen = disc(output.unsqueeze(1))
if False: # todo: check whether that makes a difference
with torch.no_grad():
scores_real = disc(target.unsqueeze(1))
cont_loss = fargan.sig_loss(target[:, nb_pre*160:nb_pre*160+80], output[:, nb_pre*160:nb_pre*160+80])
specc_loss = spect_loss(output, target.detach())
reg_loss = args.reg_weight * (.00*cont_loss + specc_loss)
loss_gen = 0
for scale in scores_gen:
loss_gen += ((1 - scale[-1]) ** 2).mean() / len(scores_gen)
feat_loss = args.fmap_weight * fmap_loss(scores_real, scores_gen)
gen_loss = reg_loss + feat_loss + loss_gen
model.zero_grad()
gen_loss.backward()
optimizer.step()
#model.clip_weights()
scheduler.step()
scheduler_disc.step()
running_cont_loss += cont_loss.detach().cpu().item()
running_gen_loss += loss_gen.detach().cpu().item()
running_disc_loss += disc_loss.detach().cpu().item()
running_fmap_loss += feat_loss.detach().cpu().item()
running_reg_loss += reg_loss.detach().cpu().item()
tepoch.set_postfix(cont_loss=f"{running_cont_loss/(i+1):8.5f}",
gen_loss=f"{running_gen_loss/(i+1):8.5f}",
disc_loss=f"{running_disc_loss/(i+1):8.5f}",
fmap_loss=f"{running_fmap_loss/(i+1):8.5f}",
reg_loss=f"{running_reg_loss/(i+1):8.5f}",
wc = f"{running_wc/(i+1):8.5f}",
)
# save checkpoint
checkpoint_path = os.path.join(checkpoint_dir, f'fargan{args.suffix}_adv_{epoch}.pth')
checkpoint['state_dict'] = model.state_dict()
checkpoint['disc_sate_dict'] = disc.state_dict()
checkpoint['loss'] = {
'cont': running_cont_loss / len(dataloader),
'gen': running_gen_loss / len(dataloader),
'disc': running_disc_loss / len(dataloader),
'fmap': running_fmap_loss / len(dataloader),
'reg': running_reg_loss / len(dataloader)
}
checkpoint['epoch'] = epoch
torch.save(checkpoint, checkpoint_path)