opus/dnn/lpcnet.py
2018-10-03 22:30:44 -04:00

98 lines
3.2 KiB
Python

#!/usr/bin/python3
import math
from keras.models import Model
from keras.layers import Input, LSTM, CuDNNGRU, Dense, Embedding, Reshape, Concatenate, Lambda, Conv1D, Multiply, Add, Bidirectional, MaxPooling1D, Activation
from keras import backend as K
from keras.initializers import Initializer
from mdense import MDense
import numpy as np
import h5py
import sys
rnn_units=128
pcm_bits = 8
embed_size = 128
pcm_levels = 2**pcm_bits
nb_used_features = 38
class PCMInit(Initializer):
def __init__(self, gain=.1, seed=None):
self.gain = gain
self.seed = seed
def __call__(self, shape, dtype=None):
num_rows = 1
for dim in shape[:-1]:
num_rows *= dim
num_cols = shape[-1]
flat_shape = (num_rows, num_cols)
if self.seed is not None:
np.random.seed(self.seed)
a = np.random.uniform(-1.7321, 1.7321, flat_shape)
#a[:,0] = math.sqrt(12)*np.arange(-.5*num_rows+.5,.5*num_rows-.4)/num_rows
#a[:,1] = .5*a[:,0]*a[:,0]*a[:,0]
a = a + np.reshape(math.sqrt(12)*np.arange(-.5*num_rows+.5,.5*num_rows-.4)/num_rows, (num_rows, 1))
return self.gain * a
def get_config(self):
return {
'gain': self.gain,
'seed': self.seed
}
def new_wavernn_model():
pcm = Input(shape=(None, 2))
exc = Input(shape=(None, 1))
pitch = Input(shape=(None, 1))
feat = Input(shape=(None, nb_used_features))
pitch = Input(shape=(None, 1))
dec_feat = Input(shape=(None, 128))
dec_state = Input(shape=(rnn_units,))
conv1 = Conv1D(16, 7, padding='causal', activation='tanh')
pconv1 = Conv1D(16, 5, padding='same', activation='tanh')
pconv2 = Conv1D(16, 5, padding='same', activation='tanh')
fconv1 = Conv1D(128, 3, padding='same', activation='tanh')
fconv2 = Conv1D(102, 3, padding='same', activation='tanh')
if False:
cpcm = conv1(pcm)
cpitch = pconv2(pconv1(pitch))
else:
cpcm = pcm
cpitch = pitch
embed = Embedding(256, embed_size, embeddings_initializer=PCMInit())
cpcm = Reshape((-1, embed_size*2))(embed(pcm))
embed2 = Embedding(256, embed_size, embeddings_initializer=PCMInit())
cexc = Reshape((-1, embed_size))(embed2(exc))
pembed = Embedding(256, 64)
cat_feat = Concatenate()([feat, Reshape((-1, 64))(pembed(pitch))])
cfeat = fconv2(fconv1(cat_feat))
fdense1 = Dense(128, activation='tanh')
fdense2 = Dense(128, activation='tanh')
cfeat = Add()([cfeat, cat_feat])
cfeat = fdense2(fdense1(cfeat))
rep = Lambda(lambda x: K.repeat_elements(x, 160, 1))
rnn = CuDNNGRU(rnn_units, return_sequences=True, return_state=True)
rnn_in = Concatenate()([cpcm, cexc, rep(cfeat)])
md = MDense(pcm_levels, activation='softmax')
gru_out, state = rnn(rnn_in)
ulaw_prob = md(gru_out)
model = Model([pcm, exc, feat, pitch], ulaw_prob)
encoder = Model([feat, pitch], cfeat)
dec_rnn_in = Concatenate()([cpcm, cexc, dec_feat])
dec_gru_out, state = rnn(dec_rnn_in, initial_state=dec_state)
dec_ulaw_prob = md(dec_gru_out)
decoder = Model([pcm, exc, dec_feat, dec_state], [dec_ulaw_prob, state])
return model, encoder, decoder