mirror of
https://github.com/xiph/opus.git
synced 2025-05-25 20:59:13 +00:00
630 lines
29 KiB
C
630 lines
29 KiB
C
/***********************************************************************
|
|
Copyright (c) 2006-2011, Skype Limited. All rights reserved.
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions
|
|
are met:
|
|
- Redistributions of source code must retain the above copyright notice,
|
|
this list of conditions and the following disclaimer.
|
|
- Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
- Neither the name of Internet Society, IETF or IETF Trust, nor the
|
|
names of specific contributors, may be used to endorse or promote
|
|
products derived from this software without specific prior written
|
|
permission.
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
POSSIBILITY OF SUCH DAMAGE.
|
|
***********************************************************************/
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include "config.h"
|
|
#endif
|
|
|
|
/*****************************************************************************
|
|
* Pitch analyser function
|
|
******************************************************************************/
|
|
#include "SigProc_FLP.h"
|
|
#include "SigProc_FIX.h"
|
|
#include "pitch_est_defines.h"
|
|
#include "pitch.h"
|
|
|
|
#define SCRATCH_SIZE 22
|
|
|
|
/************************************************************/
|
|
/* Internally used functions */
|
|
/************************************************************/
|
|
static void silk_P_Ana_calc_corr_st3(
|
|
silk_float cross_corr_st3[ PE_MAX_NB_SUBFR ][ PE_NB_CBKS_STAGE3_MAX ][ PE_NB_STAGE3_LAGS ], /* O 3 DIM correlation array */
|
|
const silk_float frame[], /* I vector to correlate */
|
|
opus_int start_lag, /* I start lag */
|
|
opus_int sf_length, /* I sub frame length */
|
|
opus_int nb_subfr, /* I number of subframes */
|
|
opus_int complexity, /* I Complexity setting */
|
|
int arch /* I Run-time architecture */
|
|
);
|
|
|
|
static void silk_P_Ana_calc_energy_st3(
|
|
silk_float energies_st3[ PE_MAX_NB_SUBFR ][ PE_NB_CBKS_STAGE3_MAX ][ PE_NB_STAGE3_LAGS ], /* O 3 DIM correlation array */
|
|
const silk_float frame[], /* I vector to correlate */
|
|
opus_int start_lag, /* I start lag */
|
|
opus_int sf_length, /* I sub frame length */
|
|
opus_int nb_subfr, /* I number of subframes */
|
|
opus_int complexity /* I Complexity setting */
|
|
);
|
|
|
|
/************************************************************/
|
|
/* CORE PITCH ANALYSIS FUNCTION */
|
|
/************************************************************/
|
|
opus_int silk_pitch_analysis_core_FLP( /* O Voicing estimate: 0 voiced, 1 unvoiced */
|
|
const silk_float *frame, /* I Signal of length PE_FRAME_LENGTH_MS*Fs_kHz */
|
|
opus_int *pitch_out, /* O Pitch lag values [nb_subfr] */
|
|
opus_int16 *lagIndex, /* O Lag Index */
|
|
opus_int8 *contourIndex, /* O Pitch contour Index */
|
|
silk_float *LTPCorr, /* I/O Normalized correlation; input: value from previous frame */
|
|
opus_int prevLag, /* I Last lag of previous frame; set to zero is unvoiced */
|
|
const silk_float search_thres1, /* I First stage threshold for lag candidates 0 - 1 */
|
|
const silk_float search_thres2, /* I Final threshold for lag candidates 0 - 1 */
|
|
const opus_int Fs_kHz, /* I sample frequency (kHz) */
|
|
const opus_int complexity, /* I Complexity setting, 0-2, where 2 is highest */
|
|
const opus_int nb_subfr, /* I Number of 5 ms subframes */
|
|
int arch /* I Run-time architecture */
|
|
)
|
|
{
|
|
opus_int i, k, d, j;
|
|
silk_float frame_8kHz[ PE_MAX_FRAME_LENGTH_MS * 8 ];
|
|
silk_float frame_4kHz[ PE_MAX_FRAME_LENGTH_MS * 4 ];
|
|
opus_int16 frame_8_FIX[ PE_MAX_FRAME_LENGTH_MS * 8 ];
|
|
opus_int16 frame_4_FIX[ PE_MAX_FRAME_LENGTH_MS * 4 ];
|
|
opus_int32 filt_state[ 6 ];
|
|
silk_float threshold, contour_bias;
|
|
silk_float C[ PE_MAX_NB_SUBFR][ (PE_MAX_LAG >> 1) + 5 ];
|
|
opus_val32 xcorr[ PE_MAX_LAG_MS * 4 - PE_MIN_LAG_MS * 4 + 1 ];
|
|
silk_float CC[ PE_NB_CBKS_STAGE2_EXT ];
|
|
const silk_float *target_ptr, *basis_ptr;
|
|
double cross_corr, normalizer, energy, energy_tmp;
|
|
opus_int d_srch[ PE_D_SRCH_LENGTH ];
|
|
opus_int16 d_comp[ (PE_MAX_LAG >> 1) + 5 ];
|
|
opus_int length_d_srch, length_d_comp;
|
|
silk_float Cmax, CCmax, CCmax_b, CCmax_new_b, CCmax_new;
|
|
opus_int CBimax, CBimax_new, lag, start_lag, end_lag, lag_new;
|
|
opus_int cbk_size;
|
|
silk_float lag_log2, prevLag_log2, delta_lag_log2_sqr;
|
|
silk_float energies_st3[ PE_MAX_NB_SUBFR ][ PE_NB_CBKS_STAGE3_MAX ][ PE_NB_STAGE3_LAGS ];
|
|
silk_float cross_corr_st3[ PE_MAX_NB_SUBFR ][ PE_NB_CBKS_STAGE3_MAX ][ PE_NB_STAGE3_LAGS ];
|
|
opus_int lag_counter;
|
|
opus_int frame_length, frame_length_8kHz, frame_length_4kHz;
|
|
opus_int sf_length, sf_length_8kHz, sf_length_4kHz;
|
|
opus_int min_lag, min_lag_8kHz, min_lag_4kHz;
|
|
opus_int max_lag, max_lag_8kHz, max_lag_4kHz;
|
|
opus_int nb_cbk_search;
|
|
const opus_int8 *Lag_CB_ptr;
|
|
|
|
/* Check for valid sampling frequency */
|
|
celt_assert( Fs_kHz == 8 || Fs_kHz == 12 || Fs_kHz == 16 );
|
|
|
|
/* Check for valid complexity setting */
|
|
celt_assert( complexity >= SILK_PE_MIN_COMPLEX );
|
|
celt_assert( complexity <= SILK_PE_MAX_COMPLEX );
|
|
|
|
silk_assert( search_thres1 >= 0.0f && search_thres1 <= 1.0f );
|
|
silk_assert( search_thres2 >= 0.0f && search_thres2 <= 1.0f );
|
|
|
|
/* Set up frame lengths max / min lag for the sampling frequency */
|
|
frame_length = ( PE_LTP_MEM_LENGTH_MS + nb_subfr * PE_SUBFR_LENGTH_MS ) * Fs_kHz;
|
|
frame_length_4kHz = ( PE_LTP_MEM_LENGTH_MS + nb_subfr * PE_SUBFR_LENGTH_MS ) * 4;
|
|
frame_length_8kHz = ( PE_LTP_MEM_LENGTH_MS + nb_subfr * PE_SUBFR_LENGTH_MS ) * 8;
|
|
sf_length = PE_SUBFR_LENGTH_MS * Fs_kHz;
|
|
sf_length_4kHz = PE_SUBFR_LENGTH_MS * 4;
|
|
sf_length_8kHz = PE_SUBFR_LENGTH_MS * 8;
|
|
min_lag = PE_MIN_LAG_MS * Fs_kHz;
|
|
min_lag_4kHz = PE_MIN_LAG_MS * 4;
|
|
min_lag_8kHz = PE_MIN_LAG_MS * 8;
|
|
max_lag = PE_MAX_LAG_MS * Fs_kHz - 1;
|
|
max_lag_4kHz = PE_MAX_LAG_MS * 4;
|
|
max_lag_8kHz = PE_MAX_LAG_MS * 8 - 1;
|
|
|
|
/* Resample from input sampled at Fs_kHz to 8 kHz */
|
|
if( Fs_kHz == 16 ) {
|
|
/* Resample to 16 -> 8 khz */
|
|
opus_int16 frame_16_FIX[ 16 * PE_MAX_FRAME_LENGTH_MS ];
|
|
silk_float2short_array( frame_16_FIX, frame, frame_length );
|
|
silk_memset( filt_state, 0, 2 * sizeof( opus_int32 ) );
|
|
silk_resampler_down2( filt_state, frame_8_FIX, frame_16_FIX, frame_length );
|
|
silk_short2float_array( frame_8kHz, frame_8_FIX, frame_length_8kHz );
|
|
} else if( Fs_kHz == 12 ) {
|
|
/* Resample to 12 -> 8 khz */
|
|
opus_int16 frame_12_FIX[ 12 * PE_MAX_FRAME_LENGTH_MS ];
|
|
silk_float2short_array( frame_12_FIX, frame, frame_length );
|
|
silk_memset( filt_state, 0, 6 * sizeof( opus_int32 ) );
|
|
silk_resampler_down2_3( filt_state, frame_8_FIX, frame_12_FIX, frame_length );
|
|
silk_short2float_array( frame_8kHz, frame_8_FIX, frame_length_8kHz );
|
|
} else {
|
|
celt_assert( Fs_kHz == 8 );
|
|
silk_float2short_array( frame_8_FIX, frame, frame_length_8kHz );
|
|
}
|
|
|
|
/* Decimate again to 4 kHz */
|
|
silk_memset( filt_state, 0, 2 * sizeof( opus_int32 ) );
|
|
silk_resampler_down2( filt_state, frame_4_FIX, frame_8_FIX, frame_length_8kHz );
|
|
silk_short2float_array( frame_4kHz, frame_4_FIX, frame_length_4kHz );
|
|
|
|
/* Low-pass filter */
|
|
for( i = frame_length_4kHz - 1; i > 0; i-- ) {
|
|
frame_4kHz[ i ] = silk_ADD_SAT16( frame_4kHz[ i ], frame_4kHz[ i - 1 ] );
|
|
}
|
|
|
|
/******************************************************************************
|
|
* FIRST STAGE, operating in 4 khz
|
|
******************************************************************************/
|
|
silk_memset(C, 0, sizeof(silk_float) * nb_subfr * ((PE_MAX_LAG >> 1) + 5));
|
|
target_ptr = &frame_4kHz[ silk_LSHIFT( sf_length_4kHz, 2 ) ];
|
|
for( k = 0; k < nb_subfr >> 1; k++ ) {
|
|
/* Check that we are within range of the array */
|
|
celt_assert( target_ptr >= frame_4kHz );
|
|
celt_assert( target_ptr + sf_length_8kHz <= frame_4kHz + frame_length_4kHz );
|
|
|
|
basis_ptr = target_ptr - min_lag_4kHz;
|
|
|
|
/* Check that we are within range of the array */
|
|
celt_assert( basis_ptr >= frame_4kHz );
|
|
celt_assert( basis_ptr + sf_length_8kHz <= frame_4kHz + frame_length_4kHz );
|
|
|
|
celt_pitch_xcorr( target_ptr, target_ptr-max_lag_4kHz, xcorr, sf_length_8kHz, max_lag_4kHz - min_lag_4kHz + 1, arch );
|
|
|
|
/* Calculate first vector products before loop */
|
|
cross_corr = xcorr[ max_lag_4kHz - min_lag_4kHz ];
|
|
normalizer = silk_energy_FLP( target_ptr, sf_length_8kHz ) +
|
|
silk_energy_FLP( basis_ptr, sf_length_8kHz ) +
|
|
sf_length_8kHz * 4000.0f;
|
|
|
|
C[ 0 ][ min_lag_4kHz ] += (silk_float)( 2 * cross_corr / normalizer );
|
|
|
|
/* From now on normalizer is computed recursively */
|
|
for( d = min_lag_4kHz + 1; d <= max_lag_4kHz; d++ ) {
|
|
basis_ptr--;
|
|
|
|
/* Check that we are within range of the array */
|
|
silk_assert( basis_ptr >= frame_4kHz );
|
|
silk_assert( basis_ptr + sf_length_8kHz <= frame_4kHz + frame_length_4kHz );
|
|
|
|
cross_corr = xcorr[ max_lag_4kHz - d ];
|
|
|
|
/* Add contribution of new sample and remove contribution from oldest sample */
|
|
normalizer +=
|
|
basis_ptr[ 0 ] * (double)basis_ptr[ 0 ] -
|
|
basis_ptr[ sf_length_8kHz ] * (double)basis_ptr[ sf_length_8kHz ];
|
|
C[ 0 ][ d ] += (silk_float)( 2 * cross_corr / normalizer );
|
|
}
|
|
/* Update target pointer */
|
|
target_ptr += sf_length_8kHz;
|
|
}
|
|
|
|
/* Apply short-lag bias */
|
|
for( i = max_lag_4kHz; i >= min_lag_4kHz; i-- ) {
|
|
C[ 0 ][ i ] -= C[ 0 ][ i ] * i / 4096.0f;
|
|
}
|
|
|
|
/* Sort */
|
|
length_d_srch = 4 + 2 * complexity;
|
|
celt_assert( 3 * length_d_srch <= PE_D_SRCH_LENGTH );
|
|
silk_insertion_sort_decreasing_FLP( &C[ 0 ][ min_lag_4kHz ], d_srch, max_lag_4kHz - min_lag_4kHz + 1, length_d_srch );
|
|
|
|
/* Escape if correlation is very low already here */
|
|
Cmax = C[ 0 ][ min_lag_4kHz ];
|
|
if( Cmax < 0.2f ) {
|
|
silk_memset( pitch_out, 0, nb_subfr * sizeof( opus_int ) );
|
|
*LTPCorr = 0.0f;
|
|
*lagIndex = 0;
|
|
*contourIndex = 0;
|
|
return 1;
|
|
}
|
|
|
|
threshold = search_thres1 * Cmax;
|
|
for( i = 0; i < length_d_srch; i++ ) {
|
|
/* Convert to 8 kHz indices for the sorted correlation that exceeds the threshold */
|
|
if( C[ 0 ][ min_lag_4kHz + i ] > threshold ) {
|
|
d_srch[ i ] = silk_LSHIFT( d_srch[ i ] + min_lag_4kHz, 1 );
|
|
} else {
|
|
length_d_srch = i;
|
|
break;
|
|
}
|
|
}
|
|
celt_assert( length_d_srch > 0 );
|
|
|
|
for( i = min_lag_8kHz - 5; i < max_lag_8kHz + 5; i++ ) {
|
|
d_comp[ i ] = 0;
|
|
}
|
|
for( i = 0; i < length_d_srch; i++ ) {
|
|
d_comp[ d_srch[ i ] ] = 1;
|
|
}
|
|
|
|
/* Convolution */
|
|
for( i = max_lag_8kHz + 3; i >= min_lag_8kHz; i-- ) {
|
|
d_comp[ i ] += d_comp[ i - 1 ] + d_comp[ i - 2 ];
|
|
}
|
|
|
|
length_d_srch = 0;
|
|
for( i = min_lag_8kHz; i < max_lag_8kHz + 1; i++ ) {
|
|
if( d_comp[ i + 1 ] > 0 ) {
|
|
d_srch[ length_d_srch ] = i;
|
|
length_d_srch++;
|
|
}
|
|
}
|
|
|
|
/* Convolution */
|
|
for( i = max_lag_8kHz + 3; i >= min_lag_8kHz; i-- ) {
|
|
d_comp[ i ] += d_comp[ i - 1 ] + d_comp[ i - 2 ] + d_comp[ i - 3 ];
|
|
}
|
|
|
|
length_d_comp = 0;
|
|
for( i = min_lag_8kHz; i < max_lag_8kHz + 4; i++ ) {
|
|
if( d_comp[ i ] > 0 ) {
|
|
d_comp[ length_d_comp ] = (opus_int16)( i - 2 );
|
|
length_d_comp++;
|
|
}
|
|
}
|
|
|
|
/**********************************************************************************
|
|
** SECOND STAGE, operating at 8 kHz, on lag sections with high correlation
|
|
*************************************************************************************/
|
|
/*********************************************************************************
|
|
* Find energy of each subframe projected onto its history, for a range of delays
|
|
*********************************************************************************/
|
|
silk_memset( C, 0, PE_MAX_NB_SUBFR*((PE_MAX_LAG >> 1) + 5) * sizeof(silk_float));
|
|
|
|
if( Fs_kHz == 8 ) {
|
|
target_ptr = &frame[ PE_LTP_MEM_LENGTH_MS * 8 ];
|
|
} else {
|
|
target_ptr = &frame_8kHz[ PE_LTP_MEM_LENGTH_MS * 8 ];
|
|
}
|
|
for( k = 0; k < nb_subfr; k++ ) {
|
|
energy_tmp = silk_energy_FLP( target_ptr, sf_length_8kHz ) + 1.0;
|
|
for( j = 0; j < length_d_comp; j++ ) {
|
|
d = d_comp[ j ];
|
|
basis_ptr = target_ptr - d;
|
|
cross_corr = silk_inner_product_FLP( basis_ptr, target_ptr, sf_length_8kHz );
|
|
if( cross_corr > 0.0f ) {
|
|
energy = silk_energy_FLP( basis_ptr, sf_length_8kHz );
|
|
C[ k ][ d ] = (silk_float)( 2 * cross_corr / ( energy + energy_tmp ) );
|
|
} else {
|
|
C[ k ][ d ] = 0.0f;
|
|
}
|
|
}
|
|
target_ptr += sf_length_8kHz;
|
|
}
|
|
|
|
/* search over lag range and lags codebook */
|
|
/* scale factor for lag codebook, as a function of center lag */
|
|
|
|
CCmax = 0.0f; /* This value doesn't matter */
|
|
CCmax_b = -1000.0f;
|
|
|
|
CBimax = 0; /* To avoid returning undefined lag values */
|
|
lag = -1; /* To check if lag with strong enough correlation has been found */
|
|
|
|
if( prevLag > 0 ) {
|
|
if( Fs_kHz == 12 ) {
|
|
prevLag = silk_LSHIFT( prevLag, 1 ) / 3;
|
|
} else if( Fs_kHz == 16 ) {
|
|
prevLag = silk_RSHIFT( prevLag, 1 );
|
|
}
|
|
prevLag_log2 = silk_log2( (silk_float)prevLag );
|
|
} else {
|
|
prevLag_log2 = 0;
|
|
}
|
|
|
|
/* Set up stage 2 codebook based on number of subframes */
|
|
if( nb_subfr == PE_MAX_NB_SUBFR ) {
|
|
cbk_size = PE_NB_CBKS_STAGE2_EXT;
|
|
Lag_CB_ptr = &silk_CB_lags_stage2[ 0 ][ 0 ];
|
|
if( Fs_kHz == 8 && complexity > SILK_PE_MIN_COMPLEX ) {
|
|
/* If input is 8 khz use a larger codebook here because it is last stage */
|
|
nb_cbk_search = PE_NB_CBKS_STAGE2_EXT;
|
|
} else {
|
|
nb_cbk_search = PE_NB_CBKS_STAGE2;
|
|
}
|
|
} else {
|
|
cbk_size = PE_NB_CBKS_STAGE2_10MS;
|
|
Lag_CB_ptr = &silk_CB_lags_stage2_10_ms[ 0 ][ 0 ];
|
|
nb_cbk_search = PE_NB_CBKS_STAGE2_10MS;
|
|
}
|
|
|
|
for( k = 0; k < length_d_srch; k++ ) {
|
|
d = d_srch[ k ];
|
|
for( j = 0; j < nb_cbk_search; j++ ) {
|
|
CC[j] = 0.0f;
|
|
for( i = 0; i < nb_subfr; i++ ) {
|
|
/* Try all codebooks */
|
|
CC[ j ] += C[ i ][ d + matrix_ptr( Lag_CB_ptr, i, j, cbk_size )];
|
|
}
|
|
}
|
|
/* Find best codebook */
|
|
CCmax_new = -1000.0f;
|
|
CBimax_new = 0;
|
|
for( i = 0; i < nb_cbk_search; i++ ) {
|
|
if( CC[ i ] > CCmax_new ) {
|
|
CCmax_new = CC[ i ];
|
|
CBimax_new = i;
|
|
}
|
|
}
|
|
|
|
/* Bias towards shorter lags */
|
|
lag_log2 = silk_log2( (silk_float)d );
|
|
CCmax_new_b = CCmax_new - PE_SHORTLAG_BIAS * nb_subfr * lag_log2;
|
|
|
|
/* Bias towards previous lag */
|
|
if( prevLag > 0 ) {
|
|
delta_lag_log2_sqr = lag_log2 - prevLag_log2;
|
|
delta_lag_log2_sqr *= delta_lag_log2_sqr;
|
|
CCmax_new_b -= PE_PREVLAG_BIAS * nb_subfr * (*LTPCorr) * delta_lag_log2_sqr / ( delta_lag_log2_sqr + 0.5f );
|
|
}
|
|
|
|
if( CCmax_new_b > CCmax_b && /* Find maximum biased correlation */
|
|
CCmax_new > nb_subfr * search_thres2 /* Correlation needs to be high enough to be voiced */
|
|
) {
|
|
CCmax_b = CCmax_new_b;
|
|
CCmax = CCmax_new;
|
|
lag = d;
|
|
CBimax = CBimax_new;
|
|
}
|
|
}
|
|
|
|
if( lag == -1 ) {
|
|
/* No suitable candidate found */
|
|
silk_memset( pitch_out, 0, PE_MAX_NB_SUBFR * sizeof(opus_int) );
|
|
*LTPCorr = 0.0f;
|
|
*lagIndex = 0;
|
|
*contourIndex = 0;
|
|
return 1;
|
|
}
|
|
|
|
/* Output normalized correlation */
|
|
*LTPCorr = (silk_float)( CCmax / nb_subfr );
|
|
silk_assert( *LTPCorr >= 0.0f );
|
|
|
|
if( Fs_kHz > 8 ) {
|
|
/* Search in original signal */
|
|
|
|
/* Compensate for decimation */
|
|
silk_assert( lag == silk_SAT16( lag ) );
|
|
if( Fs_kHz == 12 ) {
|
|
lag = silk_RSHIFT_ROUND( silk_SMULBB( lag, 3 ), 1 );
|
|
} else { /* Fs_kHz == 16 */
|
|
lag = silk_LSHIFT( lag, 1 );
|
|
}
|
|
|
|
lag = silk_LIMIT_int( lag, min_lag, max_lag );
|
|
start_lag = silk_max_int( lag - 2, min_lag );
|
|
end_lag = silk_min_int( lag + 2, max_lag );
|
|
lag_new = lag; /* to avoid undefined lag */
|
|
CBimax = 0; /* to avoid undefined lag */
|
|
|
|
CCmax = -1000.0f;
|
|
|
|
/* Calculate the correlations and energies needed in stage 3 */
|
|
silk_P_Ana_calc_corr_st3( cross_corr_st3, frame, start_lag, sf_length, nb_subfr, complexity, arch );
|
|
silk_P_Ana_calc_energy_st3( energies_st3, frame, start_lag, sf_length, nb_subfr, complexity );
|
|
|
|
lag_counter = 0;
|
|
silk_assert( lag == silk_SAT16( lag ) );
|
|
contour_bias = PE_FLATCONTOUR_BIAS / lag;
|
|
|
|
/* Set up cbk parameters according to complexity setting and frame length */
|
|
if( nb_subfr == PE_MAX_NB_SUBFR ) {
|
|
nb_cbk_search = (opus_int)silk_nb_cbk_searchs_stage3[ complexity ];
|
|
cbk_size = PE_NB_CBKS_STAGE3_MAX;
|
|
Lag_CB_ptr = &silk_CB_lags_stage3[ 0 ][ 0 ];
|
|
} else {
|
|
nb_cbk_search = PE_NB_CBKS_STAGE3_10MS;
|
|
cbk_size = PE_NB_CBKS_STAGE3_10MS;
|
|
Lag_CB_ptr = &silk_CB_lags_stage3_10_ms[ 0 ][ 0 ];
|
|
}
|
|
|
|
target_ptr = &frame[ PE_LTP_MEM_LENGTH_MS * Fs_kHz ];
|
|
energy_tmp = silk_energy_FLP( target_ptr, nb_subfr * sf_length ) + 1.0;
|
|
for( d = start_lag; d <= end_lag; d++ ) {
|
|
for( j = 0; j < nb_cbk_search; j++ ) {
|
|
cross_corr = 0.0;
|
|
energy = energy_tmp;
|
|
for( k = 0; k < nb_subfr; k++ ) {
|
|
cross_corr += cross_corr_st3[ k ][ j ][ lag_counter ];
|
|
energy += energies_st3[ k ][ j ][ lag_counter ];
|
|
}
|
|
if( cross_corr > 0.0 ) {
|
|
CCmax_new = (silk_float)( 2 * cross_corr / energy );
|
|
/* Reduce depending on flatness of contour */
|
|
CCmax_new *= 1.0f - contour_bias * j;
|
|
} else {
|
|
CCmax_new = 0.0f;
|
|
}
|
|
|
|
if( CCmax_new > CCmax && ( d + (opus_int)silk_CB_lags_stage3[ 0 ][ j ] ) <= max_lag ) {
|
|
CCmax = CCmax_new;
|
|
lag_new = d;
|
|
CBimax = j;
|
|
}
|
|
}
|
|
lag_counter++;
|
|
}
|
|
|
|
for( k = 0; k < nb_subfr; k++ ) {
|
|
pitch_out[ k ] = lag_new + matrix_ptr( Lag_CB_ptr, k, CBimax, cbk_size );
|
|
pitch_out[ k ] = silk_LIMIT( pitch_out[ k ], min_lag, PE_MAX_LAG_MS * Fs_kHz );
|
|
}
|
|
*lagIndex = (opus_int16)( lag_new - min_lag );
|
|
*contourIndex = (opus_int8)CBimax;
|
|
} else { /* Fs_kHz == 8 */
|
|
/* Save Lags */
|
|
for( k = 0; k < nb_subfr; k++ ) {
|
|
pitch_out[ k ] = lag + matrix_ptr( Lag_CB_ptr, k, CBimax, cbk_size );
|
|
pitch_out[ k ] = silk_LIMIT( pitch_out[ k ], min_lag_8kHz, PE_MAX_LAG_MS * 8 );
|
|
}
|
|
*lagIndex = (opus_int16)( lag - min_lag_8kHz );
|
|
*contourIndex = (opus_int8)CBimax;
|
|
}
|
|
celt_assert( *lagIndex >= 0 );
|
|
/* return as voiced */
|
|
return 0;
|
|
}
|
|
|
|
/***********************************************************************
|
|
* Calculates the correlations used in stage 3 search. In order to cover
|
|
* the whole lag codebook for all the searched offset lags (lag +- 2),
|
|
* the following correlations are needed in each sub frame:
|
|
*
|
|
* sf1: lag range [-8,...,7] total 16 correlations
|
|
* sf2: lag range [-4,...,4] total 9 correlations
|
|
* sf3: lag range [-3,....4] total 8 correltions
|
|
* sf4: lag range [-6,....8] total 15 correlations
|
|
*
|
|
* In total 48 correlations. The direct implementation computed in worst
|
|
* case 4*12*5 = 240 correlations, but more likely around 120.
|
|
***********************************************************************/
|
|
static void silk_P_Ana_calc_corr_st3(
|
|
silk_float cross_corr_st3[ PE_MAX_NB_SUBFR ][ PE_NB_CBKS_STAGE3_MAX ][ PE_NB_STAGE3_LAGS ], /* O 3 DIM correlation array */
|
|
const silk_float frame[], /* I vector to correlate */
|
|
opus_int start_lag, /* I start lag */
|
|
opus_int sf_length, /* I sub frame length */
|
|
opus_int nb_subfr, /* I number of subframes */
|
|
opus_int complexity, /* I Complexity setting */
|
|
int arch /* I Run-time architecture */
|
|
)
|
|
{
|
|
const silk_float *target_ptr;
|
|
opus_int i, j, k, lag_counter, lag_low, lag_high;
|
|
opus_int nb_cbk_search, delta, idx, cbk_size;
|
|
silk_float scratch_mem[ SCRATCH_SIZE ];
|
|
opus_val32 xcorr[ SCRATCH_SIZE ];
|
|
const opus_int8 *Lag_range_ptr, *Lag_CB_ptr;
|
|
|
|
celt_assert( complexity >= SILK_PE_MIN_COMPLEX );
|
|
celt_assert( complexity <= SILK_PE_MAX_COMPLEX );
|
|
|
|
if( nb_subfr == PE_MAX_NB_SUBFR ) {
|
|
Lag_range_ptr = &silk_Lag_range_stage3[ complexity ][ 0 ][ 0 ];
|
|
Lag_CB_ptr = &silk_CB_lags_stage3[ 0 ][ 0 ];
|
|
nb_cbk_search = silk_nb_cbk_searchs_stage3[ complexity ];
|
|
cbk_size = PE_NB_CBKS_STAGE3_MAX;
|
|
} else {
|
|
celt_assert( nb_subfr == PE_MAX_NB_SUBFR >> 1);
|
|
Lag_range_ptr = &silk_Lag_range_stage3_10_ms[ 0 ][ 0 ];
|
|
Lag_CB_ptr = &silk_CB_lags_stage3_10_ms[ 0 ][ 0 ];
|
|
nb_cbk_search = PE_NB_CBKS_STAGE3_10MS;
|
|
cbk_size = PE_NB_CBKS_STAGE3_10MS;
|
|
}
|
|
|
|
target_ptr = &frame[ silk_LSHIFT( sf_length, 2 ) ]; /* Pointer to middle of frame */
|
|
for( k = 0; k < nb_subfr; k++ ) {
|
|
lag_counter = 0;
|
|
|
|
/* Calculate the correlations for each subframe */
|
|
lag_low = matrix_ptr( Lag_range_ptr, k, 0, 2 );
|
|
lag_high = matrix_ptr( Lag_range_ptr, k, 1, 2 );
|
|
silk_assert(lag_high-lag_low+1 <= SCRATCH_SIZE);
|
|
celt_pitch_xcorr( target_ptr, target_ptr - start_lag - lag_high, xcorr, sf_length, lag_high - lag_low + 1, arch );
|
|
for( j = lag_low; j <= lag_high; j++ ) {
|
|
silk_assert( lag_counter < SCRATCH_SIZE );
|
|
scratch_mem[ lag_counter ] = xcorr[ lag_high - j ];
|
|
lag_counter++;
|
|
}
|
|
|
|
delta = matrix_ptr( Lag_range_ptr, k, 0, 2 );
|
|
for( i = 0; i < nb_cbk_search; i++ ) {
|
|
/* Fill out the 3 dim array that stores the correlations for */
|
|
/* each code_book vector for each start lag */
|
|
idx = matrix_ptr( Lag_CB_ptr, k, i, cbk_size ) - delta;
|
|
for( j = 0; j < PE_NB_STAGE3_LAGS; j++ ) {
|
|
silk_assert( idx + j < SCRATCH_SIZE );
|
|
silk_assert( idx + j < lag_counter );
|
|
cross_corr_st3[ k ][ i ][ j ] = scratch_mem[ idx + j ];
|
|
}
|
|
}
|
|
target_ptr += sf_length;
|
|
}
|
|
}
|
|
|
|
/********************************************************************/
|
|
/* Calculate the energies for first two subframes. The energies are */
|
|
/* calculated recursively. */
|
|
/********************************************************************/
|
|
static void silk_P_Ana_calc_energy_st3(
|
|
silk_float energies_st3[ PE_MAX_NB_SUBFR ][ PE_NB_CBKS_STAGE3_MAX ][ PE_NB_STAGE3_LAGS ], /* O 3 DIM correlation array */
|
|
const silk_float frame[], /* I vector to correlate */
|
|
opus_int start_lag, /* I start lag */
|
|
opus_int sf_length, /* I sub frame length */
|
|
opus_int nb_subfr, /* I number of subframes */
|
|
opus_int complexity /* I Complexity setting */
|
|
)
|
|
{
|
|
const silk_float *target_ptr, *basis_ptr;
|
|
double energy;
|
|
opus_int k, i, j, lag_counter;
|
|
opus_int nb_cbk_search, delta, idx, cbk_size, lag_diff;
|
|
silk_float scratch_mem[ SCRATCH_SIZE ];
|
|
const opus_int8 *Lag_range_ptr, *Lag_CB_ptr;
|
|
|
|
celt_assert( complexity >= SILK_PE_MIN_COMPLEX );
|
|
celt_assert( complexity <= SILK_PE_MAX_COMPLEX );
|
|
|
|
if( nb_subfr == PE_MAX_NB_SUBFR ) {
|
|
Lag_range_ptr = &silk_Lag_range_stage3[ complexity ][ 0 ][ 0 ];
|
|
Lag_CB_ptr = &silk_CB_lags_stage3[ 0 ][ 0 ];
|
|
nb_cbk_search = silk_nb_cbk_searchs_stage3[ complexity ];
|
|
cbk_size = PE_NB_CBKS_STAGE3_MAX;
|
|
} else {
|
|
celt_assert( nb_subfr == PE_MAX_NB_SUBFR >> 1);
|
|
Lag_range_ptr = &silk_Lag_range_stage3_10_ms[ 0 ][ 0 ];
|
|
Lag_CB_ptr = &silk_CB_lags_stage3_10_ms[ 0 ][ 0 ];
|
|
nb_cbk_search = PE_NB_CBKS_STAGE3_10MS;
|
|
cbk_size = PE_NB_CBKS_STAGE3_10MS;
|
|
}
|
|
|
|
target_ptr = &frame[ silk_LSHIFT( sf_length, 2 ) ];
|
|
for( k = 0; k < nb_subfr; k++ ) {
|
|
lag_counter = 0;
|
|
|
|
/* Calculate the energy for first lag */
|
|
basis_ptr = target_ptr - ( start_lag + matrix_ptr( Lag_range_ptr, k, 0, 2 ) );
|
|
energy = silk_energy_FLP( basis_ptr, sf_length ) + 1e-3;
|
|
silk_assert( energy >= 0.0 );
|
|
scratch_mem[lag_counter] = (silk_float)energy;
|
|
lag_counter++;
|
|
|
|
lag_diff = ( matrix_ptr( Lag_range_ptr, k, 1, 2 ) - matrix_ptr( Lag_range_ptr, k, 0, 2 ) + 1 );
|
|
for( i = 1; i < lag_diff; i++ ) {
|
|
/* remove part outside new window */
|
|
energy -= basis_ptr[sf_length - i] * (double)basis_ptr[sf_length - i];
|
|
silk_assert( energy >= 0.0 );
|
|
|
|
/* add part that comes into window */
|
|
energy += basis_ptr[ -i ] * (double)basis_ptr[ -i ];
|
|
silk_assert( energy >= 0.0 );
|
|
silk_assert( lag_counter < SCRATCH_SIZE );
|
|
scratch_mem[lag_counter] = (silk_float)energy;
|
|
lag_counter++;
|
|
}
|
|
|
|
delta = matrix_ptr( Lag_range_ptr, k, 0, 2 );
|
|
for( i = 0; i < nb_cbk_search; i++ ) {
|
|
/* Fill out the 3 dim array that stores the correlations for */
|
|
/* each code_book vector for each start lag */
|
|
idx = matrix_ptr( Lag_CB_ptr, k, i, cbk_size ) - delta;
|
|
for( j = 0; j < PE_NB_STAGE3_LAGS; j++ ) {
|
|
silk_assert( idx + j < SCRATCH_SIZE );
|
|
silk_assert( idx + j < lag_counter );
|
|
energies_st3[ k ][ i ][ j ] = scratch_mem[ idx + j ];
|
|
silk_assert( energies_st3[ k ][ i ][ j ] >= 0.0f );
|
|
}
|
|
}
|
|
target_ptr += sf_length;
|
|
}
|
|
}
|