
This eliminates an extra O(nm) lookups on decode, and reduces the rate control from O(nm^2) to O(nm), in addition to eliminating O(m) lookups on both encode and decode. Although the interface is slightly more complex, the internal code is also simpler.
377 lines
9.8 KiB
C
377 lines
9.8 KiB
C
/* (C) 2007-2008 Timothy B. Terriberry
|
|
(C) 2008 Jean-Marc Valin */
|
|
/*
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions
|
|
are met:
|
|
|
|
- Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
|
|
- Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
|
|
- Neither the name of the Xiph.org Foundation nor the names of its
|
|
contributors may be used to endorse or promote products derived from
|
|
this software without specific prior written permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
|
|
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/* Functions for encoding and decoding pulse vectors.
|
|
These are based on the function
|
|
U(n,m) = U(n-1,m) + U(n,m-1) + U(n-1,m-1),
|
|
U(n,1) = U(1,m) = 2,
|
|
which counts the number of ways of placing m pulses in n dimensions, where
|
|
at least one pulse lies in dimension 0.
|
|
For more details, see: http://people.xiph.org/~tterribe/notes/cwrs.html
|
|
*/
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include "config.h"
|
|
#endif
|
|
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include "cwrs.h"
|
|
#include "mathops.h"
|
|
|
|
/*Computes the next row/column of any recurrence that obeys the relation
|
|
u[i][j]=u[i-1][j]+u[i][j-1]+u[i-1][j-1].
|
|
_ui0 is the base case for the new row/column.*/
|
|
static inline void unext32(celt_uint32_t *_ui,int _len,celt_uint32_t _ui0){
|
|
celt_uint32_t ui1;
|
|
int j;
|
|
for(j=1;j<_len;j++){
|
|
ui1=_ui[j]+_ui[j-1]+_ui0;
|
|
_ui[j-1]=_ui0;
|
|
_ui0=ui1;
|
|
}
|
|
_ui[j-1]=_ui0;
|
|
}
|
|
|
|
static inline void unext64(celt_uint64_t *_ui,int _len,celt_uint64_t _ui0){
|
|
celt_uint64_t ui1;
|
|
int j;
|
|
for(j=1;j<_len;j++){
|
|
ui1=_ui[j]+_ui[j-1]+_ui0;
|
|
_ui[j-1]=_ui0;
|
|
_ui0=ui1;
|
|
}
|
|
_ui[j-1]=_ui0;
|
|
}
|
|
|
|
/*Computes the previous row/column of any recurrence that obeys the relation
|
|
u[i-1][j]=u[i][j]-u[i][j-1]-u[i-1][j-1].
|
|
_ui0 is the base case for the new row/column.*/
|
|
static inline void uprev32(celt_uint32_t *_ui,int _n,celt_uint32_t _ui0){
|
|
celt_uint32_t ui1;
|
|
int j;
|
|
for(j=1;j<_n;j++){
|
|
ui1=_ui[j]-_ui[j-1]-_ui0;
|
|
_ui[j-1]=_ui0;
|
|
_ui0=ui1;
|
|
}
|
|
_ui[j-1]=_ui0;
|
|
}
|
|
|
|
static inline void uprev64(celt_uint64_t *_ui,int _n,celt_uint64_t _ui0){
|
|
celt_uint64_t ui1;
|
|
int j;
|
|
for(j=1;j<_n;j++){
|
|
ui1=_ui[j]-_ui[j-1]-_ui0;
|
|
_ui[j-1]=_ui0;
|
|
_ui0=ui1;
|
|
}
|
|
_ui[j-1]=_ui0;
|
|
}
|
|
|
|
/*Returns the number of ways of choosing _m elements from a set of size _n with
|
|
replacement when a sign bit is needed for each unique element.
|
|
On input, _u should be initialized to column (_m-1) of U(n,m).
|
|
On exit, _u will be initialized to column _m of U(n,m).*/
|
|
celt_uint32_t ncwrs_unext32(int _n,celt_uint32_t *_ui){
|
|
celt_uint32_t ret;
|
|
celt_uint32_t ui0;
|
|
celt_uint32_t ui1;
|
|
int j;
|
|
ret=ui0=2;
|
|
for(j=1;j<_n;j++){
|
|
ui1=_ui[j]+_ui[j-1]+ui0;
|
|
_ui[j-1]=ui0;
|
|
ui0=ui1;
|
|
ret+=ui0;
|
|
}
|
|
_ui[j-1]=ui0;
|
|
return ret;
|
|
}
|
|
|
|
celt_uint64_t ncwrs_unext64(int _n,celt_uint64_t *_ui){
|
|
celt_uint64_t ret;
|
|
celt_uint64_t ui0;
|
|
celt_uint64_t ui1;
|
|
int j;
|
|
ret=ui0=2;
|
|
for(j=1;j<_n;j++){
|
|
ui1=_ui[j]+_ui[j-1]+ui0;
|
|
_ui[j-1]=ui0;
|
|
ui0=ui1;
|
|
ret+=ui0;
|
|
}
|
|
_ui[j-1]=ui0;
|
|
return ret;
|
|
}
|
|
|
|
/*Returns the number of ways of choosing _m elements from a set of size _n with
|
|
replacement when a sign bit is needed for each unique element.
|
|
On exit, _u will be initialized to column _m of U(n,m).*/
|
|
celt_uint32_t ncwrs_u32(int _n,int _m,celt_uint32_t *_u){
|
|
int k;
|
|
memset(_u,0,_n*sizeof(*_u));
|
|
if(_m<=0)return 1;
|
|
if(_n<=0)return 0;
|
|
for(k=1;k<_m;k++)unext32(_u,_n,2);
|
|
return ncwrs_unext32(_n,_u);
|
|
}
|
|
|
|
celt_uint64_t ncwrs_u64(int _n,int _m,celt_uint64_t *_u){
|
|
int k;
|
|
memset(_u,0,_n*sizeof(*_u));
|
|
if(_m<=0)return 1;
|
|
if(_n<=0)return 0;
|
|
for(k=1;k<_m;k++)unext64(_u,_n,2);
|
|
return ncwrs_unext64(_n,_u);
|
|
}
|
|
|
|
/*Returns the _i'th combination of _m elements chosen from a set of size _n
|
|
with associated sign bits.
|
|
_x: Returns the combination with elements sorted in ascending order.
|
|
_s: Returns the associated sign bits.
|
|
_u: Temporary storage already initialized to column _m of U(n,m).
|
|
Its contents will be overwritten.*/
|
|
void cwrsi32(int _n,int _m,celt_uint32_t _i,int *_x,int *_s,celt_uint32_t *_u){
|
|
int j;
|
|
int k;
|
|
for(k=j=0;k<_m;k++){
|
|
celt_uint32_t p;
|
|
celt_uint32_t t;
|
|
p=_u[_n-j-1];
|
|
if(k>0){
|
|
t=p>>1;
|
|
if(t<=_i||_s[k-1])_i+=t;
|
|
}
|
|
while(p<=_i){
|
|
_i-=p;
|
|
j++;
|
|
p=_u[_n-j-1];
|
|
}
|
|
t=p>>1;
|
|
_s[k]=_i>=t;
|
|
_x[k]=j;
|
|
if(_s[k])_i-=t;
|
|
uprev32(_u,_n-j,2);
|
|
}
|
|
}
|
|
|
|
void cwrsi64(int _n,int _m,celt_uint64_t _i,int *_x,int *_s,celt_uint64_t *_u){
|
|
int j;
|
|
int k;
|
|
for(k=j=0;k<_m;k++){
|
|
celt_uint64_t p;
|
|
celt_uint64_t t;
|
|
p=_u[_n-j-1];
|
|
if(k>0){
|
|
t=p>>1;
|
|
if(t<=_i||_s[k-1])_i+=t;
|
|
}
|
|
while(p<=_i){
|
|
_i-=p;
|
|
j++;
|
|
p=_u[_n-j-1];
|
|
}
|
|
t=p>>1;
|
|
_s[k]=_i>=t;
|
|
_x[k]=j;
|
|
if(_s[k])_i-=t;
|
|
uprev64(_u,_n-j,2);
|
|
}
|
|
}
|
|
|
|
/*Returns the index of the given combination of _m elements chosen from a set
|
|
of size _n with associated sign bits.
|
|
_x: The combination with elements sorted in ascending order.
|
|
_s: The associated sign bits.
|
|
_u: Temporary storage already initialized to column _m of U(n,m).
|
|
Its contents will be overwritten.*/
|
|
celt_uint32_t icwrs32(int _n,int _m,const int *_x,const int *_s,
|
|
celt_uint32_t *_u){
|
|
celt_uint32_t i;
|
|
int j;
|
|
int k;
|
|
i=0;
|
|
for(k=j=0;k<_m;k++){
|
|
celt_uint32_t p;
|
|
p=_u[_n-j-1];
|
|
if(k>0)p>>=1;
|
|
while(j<_x[k]){
|
|
i+=p;
|
|
j++;
|
|
p=_u[_n-j-1];
|
|
}
|
|
if((k==0||_x[k]!=_x[k-1])&&_s[k])i+=p>>1;
|
|
uprev32(_u,_n-j,2);
|
|
}
|
|
return i;
|
|
}
|
|
|
|
celt_uint64_t icwrs64(int _n,int _m,const int *_x,const int *_s,
|
|
celt_uint64_t *_u){
|
|
celt_uint64_t i;
|
|
int j;
|
|
int k;
|
|
i=0;
|
|
for(k=j=0;k<_m;k++){
|
|
celt_uint64_t p;
|
|
p=_u[_n-j-1];
|
|
if(k>0)p>>=1;
|
|
while(j<_x[k]){
|
|
i+=p;
|
|
j++;
|
|
p=_u[_n-j-1];
|
|
}
|
|
if((k==0||_x[k]!=_x[k-1])&&_s[k])i+=p>>1;
|
|
uprev64(_u,_n-j,2);
|
|
}
|
|
return i;
|
|
}
|
|
|
|
/*Converts a combination _x of _m unit pulses with associated sign bits _s into
|
|
a pulse vector _y of length _n.
|
|
_y: Returns the vector of pulses.
|
|
_x: The combination with elements sorted in ascending order.
|
|
_s: The associated sign bits.*/
|
|
void comb2pulse(int _n,int _m,int *_y,const int *_x,const int *_s){
|
|
int j;
|
|
int k;
|
|
int n;
|
|
for(k=j=0;k<_m;k+=n){
|
|
for(n=1;k+n<_m&&_x[k+n]==_x[k];n++);
|
|
while(j<_x[k])_y[j++]=0;
|
|
_y[j++]=_s[k]?-n:n;
|
|
}
|
|
while(j<_n)_y[j++]=0;
|
|
}
|
|
|
|
/*Converts a pulse vector vector _y of length _n into a combination of _m unit
|
|
pulses with associated sign bits _s.
|
|
_x: Returns the combination with elements sorted in ascending order.
|
|
_s: Returns the associated sign bits.
|
|
_y: The vector of pulses, whose sum of absolute values must be _m.*/
|
|
void pulse2comb(int _n,int _m,int *_x,int *_s,const int *_y){
|
|
int j;
|
|
int k;
|
|
for(k=j=0;j<_n;j++){
|
|
if(_y[j]){
|
|
int n;
|
|
int s;
|
|
n=abs(_y[j]);
|
|
s=_y[j]<0;
|
|
for(;n-->0;k++){
|
|
_x[k]=j;
|
|
_s[k]=s;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static inline void encode_comb32(int _n,int _m,const int *_x,const int *_s,
|
|
ec_enc *_enc){
|
|
VARDECL(celt_uint32_t,u);
|
|
celt_uint32_t nc;
|
|
celt_uint32_t i;
|
|
SAVE_STACK;
|
|
ALLOC(u,_n,celt_uint32_t);
|
|
nc=ncwrs_u32(_n,_m,u);
|
|
i=icwrs32(_n,_m,_x,_s,u);
|
|
ec_enc_uint(_enc,i,nc);
|
|
RESTORE_STACK;
|
|
}
|
|
|
|
static inline void encode_comb64(int _n,int _m,const int *_x,const int *_s,
|
|
ec_enc *_enc){
|
|
VARDECL(celt_uint64_t,u);
|
|
celt_uint64_t nc;
|
|
celt_uint64_t i;
|
|
SAVE_STACK;
|
|
ALLOC(u,_n,celt_uint64_t);
|
|
nc=ncwrs_u64(_n,_m,u);
|
|
i=icwrs64(_n,_m,_x,_s,u);
|
|
ec_enc_uint64(_enc,i,nc);
|
|
RESTORE_STACK;
|
|
}
|
|
|
|
void encode_pulses(int *_y, int N, int K, ec_enc *enc)
|
|
{
|
|
VARDECL(int, comb);
|
|
VARDECL(int, signs);
|
|
SAVE_STACK;
|
|
|
|
ALLOC(comb, K, int);
|
|
ALLOC(signs, K, int);
|
|
|
|
pulse2comb(N, K, comb, signs, _y);
|
|
/* Simple heuristic to figure out whether it fits in 32 bits */
|
|
if((N+4)*(K+4)<250 || (celt_ilog2(N)+1)*K<31)
|
|
{
|
|
encode_comb32(N, K, comb, signs, enc);
|
|
} else {
|
|
encode_comb64(N, K, comb, signs, enc);
|
|
}
|
|
RESTORE_STACK;
|
|
}
|
|
|
|
static inline void decode_comb32(int _n,int _m,int *_x,int *_s,ec_dec *_dec){
|
|
VARDECL(celt_uint32_t,u);
|
|
SAVE_STACK;
|
|
ALLOC(u,_n,celt_uint32_t);
|
|
cwrsi32(_n,_m,ec_dec_uint(_dec,ncwrs_u32(_n,_m,u)),_x,_s,u);
|
|
RESTORE_STACK;
|
|
}
|
|
|
|
static inline void decode_comb64(int _n,int _m,int *_x,int *_s,ec_dec *_dec){
|
|
VARDECL(celt_uint64_t,u);
|
|
SAVE_STACK;
|
|
ALLOC(u,_n,celt_uint64_t);
|
|
cwrsi64(_n,_m,ec_dec_uint64(_dec,ncwrs_u64(_n,_m,u)),_x,_s,u);
|
|
RESTORE_STACK;
|
|
}
|
|
|
|
void decode_pulses(int *_y, int N, int K, ec_dec *dec)
|
|
{
|
|
VARDECL(int, comb);
|
|
VARDECL(int, signs);
|
|
SAVE_STACK;
|
|
|
|
ALLOC(comb, K, int);
|
|
ALLOC(signs, K, int);
|
|
/* Simple heuristic to figure out whether it fits in 32 bits */
|
|
if((N+4)*(K+4)<250 || (celt_ilog2(N)+1)*K<31)
|
|
{
|
|
decode_comb32(N, K, comb, signs, dec);
|
|
} else {
|
|
decode_comb64(N, K, comb, signs, dec);
|
|
}
|
|
comb2pulse(N, K, _y, comb, signs);
|
|
RESTORE_STACK;
|
|
}
|