opus/dnn/training_tf2/train_rdovae.py
2022-10-04 00:27:36 -04:00

151 lines
6 KiB
Python

#!/usr/bin/python3
'''Copyright (c) 2021-2022 Amazon
Copyright (c) 2018-2019 Mozilla
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
'''
# Train an LPCNet model
import tensorflow as tf
strategy = tf.distribute.MultiWorkerMirroredStrategy()
import argparse
#from plc_loader import PLCLoader
parser = argparse.ArgumentParser(description='Train a quantization model')
parser.add_argument('features', metavar='<features file>', help='binary features file (float32)')
parser.add_argument('output', metavar='<output>', help='trained model file (.h5)')
parser.add_argument('--model', metavar='<model>', default='rdovae', help='PLC model python definition (without .py)')
group1 = parser.add_mutually_exclusive_group()
group1.add_argument('--quantize', metavar='<input weights>', help='quantize model')
group1.add_argument('--retrain', metavar='<input weights>', help='continue training model')
parser.add_argument('--cond-size', metavar='<units>', default=1024, type=int, help='number of units in conditioning network (default 1024)')
parser.add_argument('--epochs', metavar='<epochs>', default=120, type=int, help='number of epochs to train for (default 120)')
parser.add_argument('--batch-size', metavar='<batch size>', default=128, type=int, help='batch size to use (default 128)')
parser.add_argument('--seq-length', metavar='<sequence length>', default=1000, type=int, help='sequence length to use (default 1000)')
parser.add_argument('--lr', metavar='<learning rate>', type=float, help='learning rate')
parser.add_argument('--decay', metavar='<decay>', type=float, help='learning rate decay')
parser.add_argument('--logdir', metavar='<log dir>', help='directory for tensorboard log files')
args = parser.parse_args()
import importlib
rdovae = importlib.import_module(args.model)
import sys
import numpy as np
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.callbacks import ModelCheckpoint, CSVLogger
import tensorflow.keras.backend as K
import h5py
#gpus = tf.config.experimental.list_physical_devices('GPU')
#if gpus:
# try:
# tf.config.experimental.set_virtual_device_configuration(gpus[0], [tf.config.experimental.VirtualDeviceConfiguration(memory_limit=5120)])
# except RuntimeError as e:
# print(e)
nb_epochs = args.epochs
# Try reducing batch_size if you run out of memory on your GPU
batch_size = args.batch_size
quantize = args.quantize is not None
retrain = args.retrain is not None
if quantize:
lr = 0.00003
decay = 0
input_model = args.quantize
else:
lr = 0.001
decay = 2.5e-5
if args.lr is not None:
lr = args.lr
if args.decay is not None:
decay = args.decay
if retrain:
input_model = args.retrain
opt = Adam(lr, decay=decay, beta_2=0.99)
with strategy.scope():
model, encoder, decoder, _ = rdovae.new_rdovae_model(nb_used_features=20, nb_bits=80, batch_size=batch_size, cond_size=args.cond_size)
model.compile(optimizer=opt, loss=[rdovae.feat_dist_loss, rdovae.feat_dist_loss, rdovae.sq1_rate_loss, rdovae.sq2_rate_loss], loss_weights=[.1, .9, 1., .1], metrics={'hard_bits':rdovae.sq_rate_metric})
model.summary()
lpc_order = 16
feature_file = args.features
nb_features = model.nb_used_features + lpc_order
nb_used_features = model.nb_used_features
sequence_size = args.seq_length
# u for unquantised, load 16 bit PCM samples and convert to mu-law
features = np.memmap(feature_file, dtype='float32', mode='r')
nb_sequences = len(features)//(nb_features*sequence_size)//batch_size*batch_size
features = features[:nb_sequences*sequence_size*nb_features]
features = np.reshape(features, (nb_sequences, sequence_size, nb_features))
print(features.shape)
features = features[:, :, :nb_used_features]
#lambda_val = np.repeat(np.random.uniform(.0007, .002, (features.shape[0], 1, 1)), features.shape[1]//2, axis=1)
#quant_id = np.round(10*np.log(lambda_val/.0007)).astype('int16')
#quant_id = quant_id[:,:,0]
quant_id = np.repeat(np.random.randint(16, size=(features.shape[0], 1, 1), dtype='int16'), features.shape[1]//2, axis=1)
lambda_val = .0002*np.exp(quant_id/3.8)
quant_id = quant_id[:,:,0]
# dump models to disk as we go
checkpoint = ModelCheckpoint('{}_{}_{}.h5'.format(args.output, args.cond_size, '{epoch:02d}'))
if args.retrain is not None:
model.load_weights(args.retrain)
if quantize or retrain:
#Adapting from an existing model
model.load_weights(input_model)
model.save_weights('{}_{}_initial.h5'.format(args.output, args.cond_size))
callbacks = [checkpoint]
#callbacks = []
if args.logdir is not None:
logdir = '{}/{}_{}_logs'.format(args.logdir, args.output, args.cond_size)
tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=logdir)
callbacks.append(tensorboard_callback)
model.fit([features, quant_id, lambda_val], [features, features, features, features], batch_size=batch_size, epochs=nb_epochs, validation_split=0.0, callbacks=callbacks)