mirror of
https://github.com/xiph/opus.git
synced 2025-05-24 12:19:15 +00:00
197 lines
7.7 KiB
Python
197 lines
7.7 KiB
Python
#!/usr/bin/python3
|
|
'''Copyright (c) 2021-2022 Amazon
|
|
Copyright (c) 2018-2019 Mozilla
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions
|
|
are met:
|
|
|
|
- Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
|
|
- Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
|
|
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
'''
|
|
|
|
# Train an LPCNet model
|
|
|
|
import argparse
|
|
from plc_loader import PLCLoader
|
|
|
|
parser = argparse.ArgumentParser(description='Train a PLC model')
|
|
|
|
parser.add_argument('features', metavar='<features file>', help='binary features file (float32)')
|
|
parser.add_argument('lost_file', metavar='<packet loss file>', help='packet loss traces (int8)')
|
|
parser.add_argument('output', metavar='<output>', help='trained model file (.h5)')
|
|
parser.add_argument('--model', metavar='<model>', default='lpcnet_plc', help='PLC model python definition (without .py)')
|
|
group1 = parser.add_mutually_exclusive_group()
|
|
group1.add_argument('--quantize', metavar='<input weights>', help='quantize model')
|
|
group1.add_argument('--retrain', metavar='<input weights>', help='continue training model')
|
|
parser.add_argument('--gru-size', metavar='<units>', default=256, type=int, help='number of units in GRU (default 256)')
|
|
parser.add_argument('--cond-size', metavar='<units>', default=128, type=int, help='number of units in conditioning network (default 128)')
|
|
parser.add_argument('--epochs', metavar='<epochs>', default=120, type=int, help='number of epochs to train for (default 120)')
|
|
parser.add_argument('--batch-size', metavar='<batch size>', default=128, type=int, help='batch size to use (default 128)')
|
|
parser.add_argument('--seq-length', metavar='<sequence length>', default=1000, type=int, help='sequence length to use (default 1000)')
|
|
parser.add_argument('--lr', metavar='<learning rate>', type=float, help='learning rate')
|
|
parser.add_argument('--decay', metavar='<decay>', type=float, help='learning rate decay')
|
|
parser.add_argument('--band-loss', metavar='<weight>', default=1.0, type=float, help='weight of band loss (default 1.0)')
|
|
parser.add_argument('--loss-bias', metavar='<bias>', default=0.0, type=float, help='loss bias towards low energy (default 0.0)')
|
|
parser.add_argument('--logdir', metavar='<log dir>', help='directory for tensorboard log files')
|
|
|
|
|
|
args = parser.parse_args()
|
|
|
|
import importlib
|
|
lpcnet = importlib.import_module(args.model)
|
|
|
|
import sys
|
|
import numpy as np
|
|
from tensorflow.keras.optimizers import Adam
|
|
from tensorflow.keras.callbacks import ModelCheckpoint, CSVLogger
|
|
import tensorflow.keras.backend as K
|
|
import h5py
|
|
|
|
import tensorflow as tf
|
|
#gpus = tf.config.experimental.list_physical_devices('GPU')
|
|
#if gpus:
|
|
# try:
|
|
# tf.config.experimental.set_virtual_device_configuration(gpus[0], [tf.config.experimental.VirtualDeviceConfiguration(memory_limit=5120)])
|
|
# except RuntimeError as e:
|
|
# print(e)
|
|
|
|
nb_epochs = args.epochs
|
|
|
|
# Try reducing batch_size if you run out of memory on your GPU
|
|
batch_size = args.batch_size
|
|
|
|
quantize = args.quantize is not None
|
|
retrain = args.retrain is not None
|
|
|
|
if quantize:
|
|
lr = 0.00003
|
|
decay = 0
|
|
input_model = args.quantize
|
|
else:
|
|
lr = 0.001
|
|
decay = 2.5e-5
|
|
|
|
if args.lr is not None:
|
|
lr = args.lr
|
|
|
|
if args.decay is not None:
|
|
decay = args.decay
|
|
|
|
if retrain:
|
|
input_model = args.retrain
|
|
|
|
def plc_loss(alpha=1.0, bias=0.):
|
|
def loss(y_true,y_pred):
|
|
mask = y_true[:,:,-1:]
|
|
y_true = y_true[:,:,:-1]
|
|
e = (y_pred - y_true)*mask
|
|
e_bands = tf.signal.idct(e[:,:,:-2], norm='ortho')
|
|
bias_mask = K.minimum(1., K.maximum(0., 4*y_true[:,:,-1:]))
|
|
l1_loss = K.mean(K.abs(e)) + 0.1*K.mean(K.maximum(0., -e[:,:,-1:])) + alpha*K.mean(K.abs(e_bands) + bias*bias_mask*K.maximum(0., e_bands)) + K.mean(K.minimum(K.abs(e[:,:,18:19]),1.)) + 8*K.mean(K.minimum(K.abs(e[:,:,18:19]),.4))
|
|
return l1_loss
|
|
return loss
|
|
|
|
def plc_l1_loss():
|
|
def L1_loss(y_true,y_pred):
|
|
mask = y_true[:,:,-1:]
|
|
y_true = y_true[:,:,:-1]
|
|
e = (y_pred - y_true)*mask
|
|
l1_loss = K.mean(K.abs(e))
|
|
return l1_loss
|
|
return L1_loss
|
|
|
|
def plc_ceps_loss():
|
|
def ceps_loss(y_true,y_pred):
|
|
mask = y_true[:,:,-1:]
|
|
y_true = y_true[:,:,:-1]
|
|
e = (y_pred - y_true)*mask
|
|
l1_loss = K.mean(K.abs(e[:,:,:-2]))
|
|
return l1_loss
|
|
return ceps_loss
|
|
|
|
def plc_band_loss():
|
|
def L1_band_loss(y_true,y_pred):
|
|
mask = y_true[:,:,-1:]
|
|
y_true = y_true[:,:,:-1]
|
|
e = (y_pred - y_true)*mask
|
|
e_bands = tf.signal.idct(e[:,:,:-2], norm='ortho')
|
|
l1_loss = K.mean(K.abs(e_bands))
|
|
return l1_loss
|
|
return L1_band_loss
|
|
|
|
def plc_pitch_loss():
|
|
def pitch_loss(y_true,y_pred):
|
|
mask = y_true[:,:,-1:]
|
|
y_true = y_true[:,:,:-1]
|
|
e = (y_pred - y_true)*mask
|
|
l1_loss = K.mean(K.minimum(K.abs(e[:,:,18:19]),.4))
|
|
return l1_loss
|
|
return pitch_loss
|
|
|
|
opt = Adam(lr, decay=decay, beta_2=0.99)
|
|
strategy = tf.distribute.experimental.MultiWorkerMirroredStrategy()
|
|
|
|
with strategy.scope():
|
|
model = lpcnet.new_lpcnet_plc_model(rnn_units=args.gru_size, batch_size=batch_size, training=True, quantize=quantize, cond_size=args.cond_size)
|
|
model.compile(optimizer=opt, loss=plc_loss(alpha=args.band_loss, bias=args.loss_bias), metrics=[plc_l1_loss(), plc_ceps_loss(), plc_band_loss(), plc_pitch_loss()])
|
|
model.summary()
|
|
|
|
lpc_order = 16
|
|
|
|
feature_file = args.features
|
|
nb_features = model.nb_used_features + lpc_order + model.nb_burg_features
|
|
nb_used_features = model.nb_used_features
|
|
nb_burg_features = model.nb_burg_features
|
|
sequence_size = args.seq_length
|
|
|
|
# u for unquantised, load 16 bit PCM samples and convert to mu-law
|
|
|
|
|
|
features = np.memmap(feature_file, dtype='float32', mode='r')
|
|
nb_sequences = len(features)//(nb_features*sequence_size)//batch_size*batch_size
|
|
features = features[:nb_sequences*sequence_size*nb_features]
|
|
|
|
features = np.reshape(features, (nb_sequences, sequence_size, nb_features))
|
|
|
|
features = features[:, :, :nb_used_features+model.nb_burg_features]
|
|
|
|
lost = np.memmap(args.lost_file, dtype='int8', mode='r')
|
|
|
|
# dump models to disk as we go
|
|
checkpoint = ModelCheckpoint('{}_{}_{}.h5'.format(args.output, args.gru_size, '{epoch:02d}'))
|
|
|
|
if args.retrain is not None:
|
|
model.load_weights(args.retrain)
|
|
|
|
if quantize or retrain:
|
|
#Adapting from an existing model
|
|
model.load_weights(input_model)
|
|
|
|
model.save_weights('{}_{}_initial.h5'.format(args.output, args.gru_size))
|
|
|
|
loader = PLCLoader(features, lost, nb_burg_features, batch_size)
|
|
|
|
callbacks = [checkpoint]
|
|
if args.logdir is not None:
|
|
logdir = '{}/{}_{}_logs'.format(args.logdir, args.output, args.gru_size)
|
|
tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=logdir)
|
|
callbacks.append(tensorboard_callback)
|
|
|
|
model.fit(loader, epochs=nb_epochs, validation_split=0.0, callbacks=callbacks)
|