opus/dnn/training_tf2/tf_funcs.py
2021-10-20 23:35:59 -04:00

70 lines
2.7 KiB
Python

"""
Tensorflow/Keras helper functions to do the following:
1. \mu law <-> Linear domain conversion
2. Differentiable prediction from the input signal and LP coefficients
3. Differentiable transformations Reflection Coefficients (RCs) <-> LP Coefficients
"""
from tensorflow.keras.layers import Lambda, Multiply, Layer, Concatenate
from tensorflow.keras import backend as K
import tensorflow as tf
# \mu law <-> Linear conversion functions
scale = 255.0/32768.0
scale_1 = 32768.0/255.0
def tf_l2u(x):
s = K.sign(x)
x = K.abs(x)
u = (s*(128*K.log(1+scale*x)/K.log(256.0)))
u = K.clip(128 + u, 0, 255)
return u
def tf_u2l(u):
u = tf.cast(u,"float32")
u = u - 128.0
s = K.sign(u)
u = K.abs(u)
return s*scale_1*(K.exp(u/128.*K.log(256.0))-1)
# Differentiable Prediction Layer
# Computes the LP prediction from the input lag signal and the LP coefficients
# The inputs xt and lpc conform with the shapes in lpcnet.py (the '2400' is coded keeping this in mind)
class diff_pred(Layer):
def call(self, inputs, lpcoeffs_N = 16, frame_size = 160):
xt = inputs[0]
lpc = inputs[1]
rept = Lambda(lambda x: K.repeat_elements(x , frame_size, 1))
zpX = Lambda(lambda x: K.concatenate([0*x[:,0:lpcoeffs_N,:], x],axis = 1))
cX = Lambda(lambda x: K.concatenate([x[:,(lpcoeffs_N - i):(lpcoeffs_N - i + 2400),:] for i in range(lpcoeffs_N)],axis = 2))
pred = -Multiply()([rept(lpc),cX(zpX(xt))])
return K.sum(pred,axis = 2,keepdims = True)
# Differentiable Transformations (RC <-> LPC) computed using the Levinson Durbin Recursion
class diff_rc2lpc(Layer):
def call(self, inputs, lpcoeffs_N = 16):
def pred_lpc_recursive(input):
temp = (input[0] + K.repeat_elements(input[1],input[0].shape[2],2)*K.reverse(input[0],axes = 2))
temp = Concatenate(axis = 2)([temp,input[1]])
return temp
Llpc = Lambda(pred_lpc_recursive)
inputs = inputs[:,:,:lpcoeffs_N]
lpc_init = inputs
for i in range(1,lpcoeffs_N):
lpc_init = Llpc([lpc_init[:,:,:i],K.expand_dims(inputs[:,:,i],axis = -1)])
return lpc_init
class diff_lpc2rc(Layer):
def call(self, inputs, lpcoeffs_N = 16):
def pred_rc_recursive(input):
ki = K.repeat_elements(K.expand_dims(input[1][:,:,0],axis = -1),input[0].shape[2],2)
temp = (input[0] - ki*K.reverse(input[0],axes = 2))/(1 - ki*ki)
temp = Concatenate(axis = 2)([temp,input[1]])
return temp
Lrc = Lambda(pred_rc_recursive)
rc_init = inputs
for i in range(1,lpcoeffs_N):
j = (lpcoeffs_N - i + 1)
rc_init = Lrc([rc_init[:,:,:(j - 1)],rc_init[:,:,(j - 1):]])
return rc_init