opus/dnn/training_tf2/lpcnet_plc.py
2022-02-04 22:04:23 -05:00

101 lines
4.8 KiB
Python

#!/usr/bin/python3
'''Copyright (c) 2021-2022 Amazon
Copyright (c) 2018-2019 Mozilla
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
'''
import math
import tensorflow as tf
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Input, GRU, Dense, Embedding, Reshape, Concatenate, Lambda, Conv1D, Multiply, Add, Bidirectional, MaxPooling1D, Activation, GaussianNoise
from tensorflow.compat.v1.keras.layers import CuDNNGRU
from tensorflow.keras import backend as K
from tensorflow.keras.constraints import Constraint
from tensorflow.keras.initializers import Initializer
from tensorflow.keras.callbacks import Callback
import numpy as np
def quant_regularizer(x):
Q = 128
Q_1 = 1./Q
#return .01 * tf.reduce_mean(1 - tf.math.cos(2*3.1415926535897931*(Q*x-tf.round(Q*x))))
return .01 * tf.reduce_mean(K.sqrt(K.sqrt(1.0001 - tf.math.cos(2*3.1415926535897931*(Q*x-tf.round(Q*x))))))
class WeightClip(Constraint):
'''Clips the weights incident to each hidden unit to be inside a range
'''
def __init__(self, c=2):
self.c = c
def __call__(self, p):
# Ensure that abs of adjacent weights don't sum to more than 127. Otherwise there's a risk of
# saturation when implementing dot products with SSSE3 or AVX2.
return self.c*p/tf.maximum(self.c, tf.repeat(tf.abs(p[:, 1::2])+tf.abs(p[:, 0::2]), 2, axis=1))
#return K.clip(p, -self.c, self.c)
def get_config(self):
return {'name': self.__class__.__name__,
'c': self.c}
constraint = WeightClip(0.992)
def new_lpcnet_plc_model(rnn_units=256, nb_used_features=20, nb_burg_features=36, batch_size=128, training=False, adaptation=False, quantize=False, cond_size=128):
feat = Input(shape=(None, nb_used_features+nb_burg_features), batch_size=batch_size)
lost = Input(shape=(None, 1), batch_size=batch_size)
fdense1 = Dense(cond_size, activation='tanh', name='plc_dense1')
cfeat = Concatenate()([feat, lost])
cfeat = fdense1(cfeat)
#cfeat = Conv1D(cond_size, 3, padding='causal', activation='tanh', name='plc_conv1')(cfeat)
quant = quant_regularizer if quantize else None
if training:
rnn = CuDNNGRU(rnn_units, return_sequences=True, return_state=True, name='plc_gru1', stateful=True,
kernel_constraint=constraint, recurrent_constraint = constraint, kernel_regularizer=quant, recurrent_regularizer=quant)
rnn2 = CuDNNGRU(rnn_units, return_sequences=True, return_state=True, name='plc_gru2', stateful=True,
kernel_constraint=constraint, recurrent_constraint = constraint, kernel_regularizer=quant, recurrent_regularizer=quant)
else:
rnn = GRU(rnn_units, return_sequences=True, return_state=True, recurrent_activation="sigmoid", reset_after='true', name='plc_gru1', stateful=True,
kernel_constraint=constraint, recurrent_constraint = constraint, kernel_regularizer=quant, recurrent_regularizer=quant)
rnn2 = GRU(rnn_units, return_sequences=True, return_state=True, recurrent_activation="sigmoid", reset_after='true', name='plc_gru2', stateful=True,
kernel_constraint=constraint, recurrent_constraint = constraint, kernel_regularizer=quant, recurrent_regularizer=quant)
gru_out1, _ = rnn(cfeat)
gru_out1 = GaussianNoise(.005)(gru_out1)
gru_out2, _ = rnn2(gru_out1)
out_dense = Dense(nb_used_features, activation='linear', name='plc_out')
plc_out = out_dense(gru_out2)
model = Model([feat, lost], plc_out)
model.rnn_units = rnn_units
model.cond_size = cond_size
model.nb_used_features = nb_used_features
model.nb_burg_features = nb_burg_features
return model