mirror of
https://github.com/xiph/opus.git
synced 2025-05-24 12:19:15 +00:00
111 lines
4.2 KiB
Python
111 lines
4.2 KiB
Python
#!/usr/bin/python3
|
|
'''Copyright (c) 2021-2022 Amazon
|
|
Copyright (c) 2018-2019 Mozilla
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions
|
|
are met:
|
|
|
|
- Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
|
|
- Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
|
|
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
'''
|
|
|
|
# Train an LPCNet model
|
|
|
|
import argparse
|
|
#from plc_loader import PLCLoader
|
|
|
|
parser = argparse.ArgumentParser(description='Train a PLC model')
|
|
|
|
parser.add_argument('bits', metavar='<bits file>', help='binary features file (int16)')
|
|
parser.add_argument('output', metavar='<output>', help='output features')
|
|
parser.add_argument('--model', metavar='<model>', default='rdovae', help='PLC model python definition (without .py)')
|
|
group1 = parser.add_mutually_exclusive_group()
|
|
group1.add_argument('--weights', metavar='<input weights>', help='model weights')
|
|
parser.add_argument('--cond-size', metavar='<units>', default=1024, type=int, help='number of units in conditioning network (default 1024)')
|
|
parser.add_argument('--batch-size', metavar='<batch size>', default=1, type=int, help='batch size to use (default 128)')
|
|
parser.add_argument('--seq-length', metavar='<sequence length>', default=1000, type=int, help='sequence length to use (default 1000)')
|
|
|
|
|
|
args = parser.parse_args()
|
|
|
|
import importlib
|
|
rdovae = importlib.import_module(args.model)
|
|
|
|
import sys
|
|
import numpy as np
|
|
from tensorflow.keras.optimizers import Adam
|
|
from tensorflow.keras.callbacks import ModelCheckpoint, CSVLogger
|
|
import tensorflow.keras.backend as K
|
|
import h5py
|
|
|
|
import tensorflow as tf
|
|
from rdovae import pvq_quantize
|
|
from rdovae import apply_dead_zone
|
|
|
|
# Try reducing batch_size if you run out of memory on your GPU
|
|
batch_size = args.batch_size
|
|
|
|
model, encoder, decoder, qembedding = rdovae.new_rdovae_model(nb_used_features=20, nb_bits=80, batch_size=batch_size, cond_size=args.cond_size)
|
|
model.load_weights(args.weights)
|
|
|
|
lpc_order = 16
|
|
nbits=80
|
|
|
|
|
|
bits_file = args.bits
|
|
sequence_size = args.seq_length
|
|
|
|
# u for unquantised, load 16 bit PCM samples and convert to mu-law
|
|
|
|
|
|
bits = np.memmap(bits_file + "-syms.f32", dtype='float32', mode='r')
|
|
nb_sequences = len(bits)//(40*sequence_size)//batch_size*batch_size
|
|
bits = bits[:nb_sequences*sequence_size*40]
|
|
|
|
bits = np.reshape(bits, (nb_sequences, sequence_size//2, 20*4))
|
|
print(bits.shape)
|
|
|
|
lambda_val = 0.001 * np.ones((nb_sequences, sequence_size//2, 1))
|
|
quant_id = np.round(3.8*np.log(lambda_val/.0002)).astype('int16')
|
|
quant_id = quant_id[:,:,0]
|
|
quant_embed = qembedding(quant_id)
|
|
quant_scale = tf.math.softplus(quant_embed[:,:,:nbits])
|
|
dead_zone = tf.math.softplus(quant_embed[:, :, nbits : 2 * nbits])
|
|
|
|
bits = bits*quant_scale
|
|
bits = np.round(apply_dead_zone([bits, dead_zone]).numpy())
|
|
bits = bits/quant_scale
|
|
|
|
|
|
state = np.memmap(bits_file + "-state.f32", dtype='float32', mode='r')
|
|
|
|
state = np.reshape(state, (nb_sequences, sequence_size//2, 24))
|
|
state = state[:,-1,:]
|
|
state = pvq_quantize(state, 82)
|
|
#state = state/(1e-15+tf.norm(state, axis=-1,keepdims=True))
|
|
|
|
print("shapes are:")
|
|
print(bits.shape)
|
|
print(state.shape)
|
|
|
|
bits = bits[:,1::2,:]
|
|
features = decoder.predict([bits, state], batch_size=batch_size)
|
|
|
|
features.astype('float32').tofile(args.output)
|