opus/libcelt/vq.c
Jean-Marc Valin ca53b7c919 Squashed commit of the following:
commit ea807b68678dd76175def2c5eb006c6bdb16679e
Author: Jean-Marc Valin <jean-marc.valin@usherbrooke.ca>
Date:   Wed Mar 25 23:24:41 2009 -0400

    cleanup before merge

commit 73ad1a0202641be6a23903e464ece21fe332a131
Author: Jean-Marc Valin <jean-marc.valin@usherbrooke.ca>
Date:   Sat Mar 21 00:02:16 2009 -0400

    Some tuning of the new stereo

commit c05057eb57a7723045214a2f830fd561388ae48a
Author: Jean-Marc Valin <jean-marc.valin@usherbrooke.ca>
Date:   Sun Mar 15 19:56:11 2009 -0400

    fixed-point: atan2() converted

commit a8476cf8be55b0612d42df98d9807ca1335adfe3
Author: Jean-Marc Valin <jean-marc.valin@usherbrooke.ca>
Date:   Sat Mar 14 23:10:04 2009 -0400

    fixed-point: Getting the new stereo code working in fixed-point (still more
    work left)

commit 70a452761a5ce15700664e7167886dce5914cbd0
Author: Jean-Marc Valin <jean-marc.valin@usherbrooke.ca>
Date:   Mon Mar 2 23:36:25 2009 -0500

    Coding left and right independently for lower bands

commit 4efd1e6385c7d036749080265a8d26668312b91b
Author: Jean-Marc Valin <jean-marc.valin@usherbrooke.ca>
Date:   Sun Mar 1 23:56:46 2009 -0500

    Removed the sqrt(C) from the normalisation, which simplifies a lot of things.

commit a4f3c5c60bc396bf644afa49b49e6b24ccf144f8
Author: Jean-Marc Valin <jean-marc.valin@usherbrooke.ca>
Date:   Fri Feb 20 20:49:38 2009 -0500

    Better point stereo calculation when we don't encode the side anyway

commit f08525de4739f4017d19ec2e2022883deda8f826
Author: Jean-Marc Valin <jean-marc.valin@usherbrooke.ca>
Date:   Thu Feb 19 19:43:09 2009 -0500

    Apparently, Timothy's calculations for fine energy allocation also apply
    to the quantisation of theta.

commit 6548cffc9d3f996b8a8dbfab982f0da0bc6c2dc2
Author: Jean-Marc Valin <jean-marc.valin@usherbrooke.ca>
Date:   Thu Feb 19 07:35:24 2009 -0500

    Better handling of the "theta bits" and disabling the orthogonalize()

commit 7aa82c694967afa85dd30be8cc670663f98829fe
Author: Jean-Marc Valin <jean-marc.valin@usherbrooke.ca>
Date:   Wed Feb 18 08:01:07 2009 -0500

    tuning the new stereo

commit c2b780a773de66fd9613c7cd54c09b705fe9ce45
Author: Jean-Marc Valin <jean-marc.valin@usherbrooke.ca>
Date:   Sun Feb 15 22:24:52 2009 -0500

    The new stereo coupling actually decodes properly now.

commit 85513c203d773bebcf0a6055f953170d563d890c
Author: Jean-Marc Valin <jean-marc.valin@usherbrooke.ca>
Date:   Sun Feb 15 21:31:16 2009 -0500

    First attempt at a new "constrained" MS stereo scheme
2009-03-26 20:23:14 -04:00

372 lines
11 KiB
C

/* (C) 2007-2008 Jean-Marc Valin, CSIRO
*/
/*
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
- Neither the name of the Xiph.org Foundation nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "mathops.h"
#include "cwrs.h"
#include "vq.h"
#include "arch.h"
#include "os_support.h"
/** Takes the pitch vector and the decoded residual vector, computes the gain
that will give ||p+g*y||=1 and mixes the residual with the pitch. */
static void mix_pitch_and_residual(int * restrict iy, celt_norm_t * restrict X, int N, int K, const celt_norm_t * restrict P)
{
int i;
celt_word32_t Ryp, Ryy, Rpp;
celt_word16_t ryp, ryy, rpp;
celt_word32_t g;
VARDECL(celt_norm_t, y);
#ifdef FIXED_POINT
int yshift;
#endif
SAVE_STACK;
#ifdef FIXED_POINT
yshift = 13-celt_ilog2(K);
#endif
ALLOC(y, N, celt_norm_t);
/*for (i=0;i<N;i++)
printf ("%d ", iy[i]);*/
Rpp = 0;
i=0;
do {
Rpp = MAC16_16(Rpp,P[i],P[i]);
y[i] = SHL16(iy[i],yshift);
} while (++i < N);
Ryp = 0;
Ryy = 0;
/* If this doesn't generate a dual MAC (on supported archs), fire the compiler guy */
i=0;
do {
Ryp = MAC16_16(Ryp, y[i], P[i]);
Ryy = MAC16_16(Ryy, y[i], y[i]);
} while (++i < N);
ryp = ROUND16(Ryp,14);
ryy = ROUND16(Ryy,14);
rpp = ROUND16(Rpp,14);
/* g = (sqrt(Ryp^2 + Ryy - Rpp*Ryy)-Ryp)/Ryy */
g = MULT16_32_Q15(celt_sqrt(MAC16_16(Ryy, ryp,ryp) - MULT16_16(ryy,rpp)) - ryp,
celt_rcp(SHR32(Ryy,9)));
i=0;
do
X[i] = ADD16(P[i], ROUND16(MULT16_16(y[i], g),11));
while (++i < N);
RESTORE_STACK;
}
void alg_quant(celt_norm_t *X, celt_mask_t *W, int N, int K, celt_norm_t *P, ec_enc *enc)
{
VARDECL(celt_norm_t, y);
VARDECL(int, iy);
VARDECL(celt_word16_t, signx);
int j, is;
celt_word16_t s;
int pulsesLeft;
celt_word32_t sum;
celt_word32_t xy, yy, yp;
celt_word16_t Rpp;
int N_1; /* Inverse of N, in Q14 format (even for float) */
#ifdef FIXED_POINT
int yshift;
#endif
SAVE_STACK;
#ifdef FIXED_POINT
yshift = 13-celt_ilog2(K);
#endif
ALLOC(y, N, celt_norm_t);
ALLOC(iy, N, int);
ALLOC(signx, N, celt_word16_t);
N_1 = 512/N;
sum = 0;
j=0; do {
X[j] -= P[j];
if (X[j]>0)
signx[j]=1;
else {
signx[j]=-1;
X[j]=-X[j];
P[j]=-P[j];
}
iy[j] = 0;
y[j] = 0;
sum = MAC16_16(sum, P[j],P[j]);
} while (++j<N);
Rpp = ROUND16(sum, NORM_SHIFT);
celt_assert2(Rpp<=NORM_SCALING, "Rpp should never have a norm greater than unity");
xy = yy = yp = 0;
pulsesLeft = K;
/* Do a pre-search by projecting on the pyramid */
if (K > (N>>1))
{
celt_word16_t rcp;
sum=0;
j=0; do {
sum += X[j];
} while (++j<N);
if (sum == 0)
{
X[0] = 16384;
sum = 16384;
}
/* Do we have sufficient accuracy here? */
rcp = EXTRACT16(MULT16_32_Q16(K-1, celt_rcp(sum)));
/*rcp = DIV32(SHL32(EXTEND32(K-1),15),EPSILON+sum);*/
/*printf ("%d (%d %d)\n", rcp, N, K);*/
j=0; do {
#ifdef FIXED_POINT
/* It's really important to round *towards zero* here */
iy[j] = MULT16_16_Q15(X[j],rcp);
#else
iy[j] = floor(rcp*X[j]);
#endif
y[j] = SHL16(iy[j],yshift);
yy = MAC16_16(yy, y[j],y[j]);
xy = MAC16_16(xy, X[j],y[j]);
yp += P[j]*y[j];
y[j] *= 2;
pulsesLeft -= iy[j];
} while (++j<N);
}
/*if (pulsesLeft > N+2)
printf ("%d / %d (%d)\n", pulsesLeft, K, N);*/
celt_assert2(pulsesLeft>=1, "Allocated too many pulses in the quick pass");
while (pulsesLeft > 1)
{
int pulsesAtOnce=1;
int best_id;
celt_word16_t magnitude;
celt_word32_t best_num = -VERY_LARGE16;
celt_word16_t best_den = 0;
#ifdef FIXED_POINT
int rshift;
#endif
/* Decide on how many pulses to find at once */
pulsesAtOnce = (pulsesLeft*N_1)>>9; /* pulsesLeft/N */
if (pulsesAtOnce<1)
pulsesAtOnce = 1;
#ifdef FIXED_POINT
rshift = yshift+1+celt_ilog2(K-pulsesLeft+pulsesAtOnce);
#endif
magnitude = SHL16(pulsesAtOnce, yshift);
best_id = 0;
/* The squared magnitude term gets added anyway, so we might as well
add it outside the loop */
yy = MAC16_16(yy, magnitude,magnitude);
/* Choose between fast and accurate strategy depending on where we are in the search */
/* This should ensure that anything we can process will have a better score */
j=0;
do {
celt_word16_t Rxy, Ryy;
/* Select sign based on X[j] alone */
s = magnitude;
/* Temporary sums of the new pulse(s) */
Rxy = EXTRACT16(SHR32(MAC16_16(xy, s,X[j]),rshift));
/* We're multiplying y[j] by two so we don't have to do it here */
Ryy = EXTRACT16(SHR32(MAC16_16(yy, s,y[j]),rshift));
/* Approximate score: we maximise Rxy/sqrt(Ryy) (we're guaranteed that
Rxy is positive because the sign is pre-computed) */
Rxy = MULT16_16_Q15(Rxy,Rxy);
/* The idea is to check for num/den >= best_num/best_den, but that way
we can do it without any division */
/* OPT: Make sure to use conditional moves here */
if (MULT16_16(best_den, Rxy) > MULT16_16(Ryy, best_num))
{
best_den = Ryy;
best_num = Rxy;
best_id = j;
}
} while (++j<N);
j = best_id;
is = pulsesAtOnce;
s = SHL16(is, yshift);
/* Updating the sums of the new pulse(s) */
xy = xy + MULT16_16(s,X[j]);
/* We're multiplying y[j] by two so we don't have to do it here */
yy = yy + MULT16_16(s,y[j]);
yp = yp + MULT16_16(s, P[j]);
/* Only now that we've made the final choice, update y/iy */
/* Multiplying y[j] by 2 so we don't have to do it everywhere else */
y[j] += 2*s;
iy[j] += is;
pulsesLeft -= pulsesAtOnce;
}
if (pulsesLeft > 0)
{
celt_word16_t g;
celt_word16_t best_num = -VERY_LARGE16;
celt_word16_t best_den = 0;
int best_id = 0;
celt_word16_t magnitude = SHL16(1, yshift);
/* The squared magnitude term gets added anyway, so we might as well
add it outside the loop */
yy = MAC16_16(yy, magnitude,magnitude);
j=0;
do {
celt_word16_t Rxy, Ryy, Ryp;
celt_word16_t num;
/* Select sign based on X[j] alone */
s = magnitude;
/* Temporary sums of the new pulse(s) */
Rxy = ROUND16(MAC16_16(xy, s,X[j]), 14);
/* We're multiplying y[j] by two so we don't have to do it here */
Ryy = ROUND16(MAC16_16(yy, s,y[j]), 14);
Ryp = ROUND16(MAC16_16(yp, s,P[j]), 14);
/* Compute the gain such that ||p + g*y|| = 1
...but instead, we compute g*Ryy to avoid dividing */
g = celt_psqrt(MULT16_16(Ryp,Ryp) + MULT16_16(Ryy,QCONST16(1.f,14)-Rpp)) - Ryp;
/* Knowing that gain, what's the error: (x-g*y)^2
(result is negated and we discard x^2 because it's constant) */
/* score = 2*g*Rxy - g*g*Ryy;*/
#ifdef FIXED_POINT
/* No need to multiply Rxy by 2 because we did it earlier */
num = MULT16_16_Q15(ADD16(SUB16(Rxy,g),Rxy),g);
#else
num = g*(2*Rxy-g);
#endif
if (MULT16_16(best_den, num) > MULT16_16(Ryy, best_num))
{
best_den = Ryy;
best_num = num;
best_id = j;
}
} while (++j<N);
iy[best_id] += 1;
}
j=0;
do {
P[j] = MULT16_16(signx[j],P[j]);
X[j] = MULT16_16(signx[j],X[j]);
if (signx[j] < 0)
iy[j] = -iy[j];
} while (++j<N);
encode_pulses(iy, N, K, enc);
/* Recompute the gain in one pass to reduce the encoder-decoder mismatch
due to the recursive computation used in quantisation. */
mix_pitch_and_residual(iy, X, N, K, P);
RESTORE_STACK;
}
/** Decode pulse vector and combine the result with the pitch vector to produce
the final normalised signal in the current band. */
void alg_unquant(celt_norm_t *X, int N, int K, celt_norm_t *P, ec_dec *dec)
{
VARDECL(int, iy);
SAVE_STACK;
ALLOC(iy, N, int);
decode_pulses(iy, N, K, dec);
mix_pitch_and_residual(iy, X, N, K, P);
RESTORE_STACK;
}
celt_word16_t renormalise_vector(celt_norm_t *X, celt_word16_t value, int N, int stride)
{
int i;
celt_word32_t E = EPSILON;
celt_word16_t rE;
celt_word16_t g;
celt_norm_t *xptr = X;
for (i=0;i<N;i++)
{
E = MAC16_16(E, *xptr, *xptr);
xptr += stride;
}
rE = celt_sqrt(E);
g = MULT16_16_Q15(value,celt_rcp(SHL32(rE,9)));
xptr = X;
for (i=0;i<N;i++)
{
*xptr = PSHR32(MULT16_16(g, *xptr),8);
xptr += stride;
}
return rE;
}
static void fold(const CELTMode *m, int N, celt_norm_t *Y, celt_norm_t * restrict P, int N0, int B)
{
int j;
const int C = CHANNELS(m);
int id = N0 % (C*B);
/* Here, we assume that id will never be greater than N0, i.e. that
no band is wider than N0. In the unlikely case it happens, we set
everything to zero */
if (id+C*N>N0)
for (j=0;j<C*N;j++)
P[j] = 0;
else
for (j=0;j<C*N;j++)
P[j] = Y[id++];
}
#define KGAIN 6
void intra_fold(const CELTMode *m, celt_norm_t * restrict x, int N, int K, celt_norm_t *Y, celt_norm_t * restrict P, int N0, int B)
{
celt_word16_t pred_gain;
const int C = CHANNELS(m);
if (K==0)
pred_gain = Q15ONE;
else
pred_gain = celt_div((celt_word32_t)MULT16_16(Q15_ONE,N),(celt_word32_t)(N+KGAIN*K));
fold(m, N, Y, P, N0, B);
renormalise_vector(P, pred_gain, C*N, 1);
}