opus/dnn/torch/osce/stndrd/evaluation/run_nomad.py
2024-01-20 14:44:22 +01:00

138 lines
5.2 KiB
Python

"""
/* Copyright (c) 2023 Amazon
Written by Jan Buethe */
/*
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
"""
import os
import argparse
import tempfile
import shutil
import pandas as pd
from scipy.spatial.distance import cdist
from scipy.io import wavfile
import numpy as np
from nomad_audio.nomad import Nomad
parser = argparse.ArgumentParser()
parser.add_argument('folder', type=str, help='folder with processed items')
parser.add_argument('--full-reference', action='store_true', help='use NOMAD as full-reference metric')
parser.add_argument('--device', type=str, default=None, help='device for Nomad')
def get_bitrates(folder):
with open(os.path.join(folder, 'bitrates.txt')) as f:
x = f.read()
bitrates = [int(y) for y in x.rstrip('\n').split()]
return bitrates
def get_itemlist(folder):
with open(os.path.join(folder, 'items.txt')) as f:
lines = f.readlines()
items = [x.split()[0] for x in lines]
return items
def nomad_wrapper(ref_folder, deg_folder, full_reference=False, ref_embeddings=None, device=None):
model = Nomad(device=device)
if not full_reference:
results = model.predict(nmr=ref_folder, deg=deg_folder)[0].to_dict()['NOMAD']
return results, None
else:
if ref_embeddings is None:
print(f"Computing reference embeddings from {ref_folder}")
ref_data = pd.DataFrame(sorted(os.listdir(ref_folder)))
ref_data.columns = ['filename']
ref_data['filename'] = [os.path.join(ref_folder, x) for x in ref_data['filename']]
ref_embeddings = model.get_embeddings_csv(model.model, ref_data).set_index('filename')
print(f"Computing degraded embeddings from {deg_folder}")
deg_data = pd.DataFrame(sorted(os.listdir(deg_folder)))
deg_data.columns = ['filename']
deg_data['filename'] = [os.path.join(deg_folder, x) for x in deg_data['filename']]
deg_embeddings = model.get_embeddings_csv(model.model, deg_data).set_index('filename')
dist = np.diag(cdist(ref_embeddings, deg_embeddings)) # wasteful
test_files = [x.split('/')[-1].split('.')[0] for x in deg_embeddings.index]
results = dict(zip(test_files, dist))
return results, ref_embeddings
def nomad_process_all(folder, full_reference=False, device=None):
bitrates = get_bitrates(folder)
items = get_itemlist(folder)
with tempfile.TemporaryDirectory() as dir:
cleandir = os.path.join(dir, 'clean')
opusdir = os.path.join(dir, 'opus')
lacedir = os.path.join(dir, 'lace')
nolacedir = os.path.join(dir, 'nolace')
# prepare files
for d in [cleandir, opusdir, lacedir, nolacedir]: os.makedirs(d)
for br in bitrates:
for item in items:
for cond in ['clean', 'opus', 'lace', 'nolace']:
shutil.copyfile(os.path.join(folder, cond, f"{item}_{br}_{cond}.wav"), os.path.join(dir, cond, f"{item}_{br}.wav"))
nomad_opus, ref_embeddings = nomad_wrapper(cleandir, opusdir, full_reference=full_reference, ref_embeddings=None)
nomad_lace, ref_embeddings = nomad_wrapper(cleandir, lacedir, full_reference=full_reference, ref_embeddings=ref_embeddings)
nomad_nolace, ref_embeddings = nomad_wrapper(cleandir, nolacedir, full_reference=full_reference, ref_embeddings=ref_embeddings)
results = dict()
for br in bitrates:
results[br] = np.zeros((len(items), 3))
for i, item in enumerate(items):
key = f"{item}_{br}"
results[br][i, 0] = nomad_opus[key]
results[br][i, 1] = nomad_lace[key]
results[br][i, 2] = nomad_nolace[key]
return results
if __name__ == "__main__":
args = parser.parse_args()
items = get_itemlist(args.folder)
bitrates = get_bitrates(args.folder)
results = nomad_process_all(args.folder, full_reference=args.full_reference, device=args.device)
np.save(os.path.join(args.folder, f'results_nomad.npy'), results)
print("Done.")