opus/silk/silk_MacroDebug.h
Jean-Marc Valin 103302b375 Squashed commit of the following:
commit 5b64cf7c4d67af9050bc959996ef976ce6326888
Author: Jean-Marc Valin <jean-marc.valin@octasic.com>
Date:   Thu May 19 16:40:35 2011 -0400

    Fixes a few bugs introduced in the latest update

commit b91eb86025d2de3c4cf04f4fb1aa48a28ad676a3
Author: Timothy B. Terriberry <tterribe@xiph.org>
Date:   Thu May 19 16:12:02 2011 -0400

    build_draft.sh fixes

commit 0b10c30db7ad60ff7d4bfc1139bdb86e0543c035
Author: Jean-Marc Valin <jean-marc.valin@octasic.com>
Date:   Thu May 19 15:30:21 2011 -0400

    Fixes the draft build

commit 164424cded5978e657105104e171ac202dde5e5b
Author: Jean-Marc Valin <jean-marc.valin@octasic.com>
Date:   Thu May 19 15:00:23 2011 -0400

    Updated build system

commit 188d9fcba8c3a1b1ad67c67c430e1b37e3658a40
Author: Koen Vos <koen.vos@skype.net>
Date:   Thu May 19 17:14:57 2011 -0400

    SILK/Opus update
2011-05-19 17:17:44 -04:00

559 lines
18 KiB
C

/***********************************************************************
Copyright (c) 2006-2011, Skype Limited. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, (subject to the limitations in the disclaimer below)
are permitted provided that the following conditions are met:
- Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
- Neither the name of Skype Limited, nor the names of specific
contributors, may be used to endorse or promote products derived from
this software without specific prior written permission.
NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED
BY THIS LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS ''AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
***********************************************************************/
#ifndef _SIGPROCFIX_API_DEBUG_H_
#define _SIGPROCFIX_API_DEBUG_H_
// Redefine macro functions with extensive assertion in Win32_DEBUG mode.
// As function can't be undefined, this file can't work with SigProcFIX_MacroCount.h
#if 0 && defined (_WIN32) && defined (_DEBUG) && !defined (SKP_MACRO_COUNT)
#undef SKP_ADD16
SKP_INLINE SKP_int16 SKP_ADD16(SKP_int16 a, SKP_int16 b){
SKP_int16 ret;
ret = a + b;
SKP_assert( ret == SKP_ADD_SAT16( a, b ));
return ret;
}
#undef SKP_ADD32
SKP_INLINE SKP_int32 SKP_ADD32(SKP_int32 a, SKP_int32 b){
SKP_int32 ret;
ret = a + b;
SKP_assert( ret == SKP_ADD_SAT32( a, b ));
return ret;
}
#undef SKP_ADD64
SKP_INLINE SKP_int64 SKP_ADD64(SKP_int64 a, SKP_int64 b){
SKP_int64 ret;
ret = a + b;
SKP_assert( ret == SKP_ADD_SAT64( a, b ));
return ret;
}
#undef SKP_SUB16
SKP_INLINE SKP_int16 SKP_SUB16(SKP_int16 a, SKP_int16 b){
SKP_int16 ret;
ret = a - b;
SKP_assert( ret == SKP_SUB_SAT16( a, b ));
return ret;
}
#undef SKP_SUB32
SKP_INLINE SKP_int32 SKP_SUB32(SKP_int32 a, SKP_int32 b){
SKP_int32 ret;
ret = a - b;
SKP_assert( ret == SKP_SUB_SAT32( a, b ));
return ret;
}
#undef SKP_SUB64
SKP_INLINE SKP_int64 SKP_SUB64(SKP_int64 a, SKP_int64 b){
SKP_int64 ret;
ret = a - b;
SKP_assert( ret == SKP_SUB_SAT64( a, b ));
return ret;
}
#undef SKP_ADD_SAT16
SKP_INLINE SKP_int16 SKP_ADD_SAT16( SKP_int16 a16, SKP_int16 b16 ) {
SKP_int16 res;
res = (SKP_int16)SKP_SAT16( SKP_ADD32( (SKP_int32)(a16), (b16) ) );
SKP_assert( res == SKP_SAT16( ( SKP_int32 )a16 + ( SKP_int32 )b16 ) );
return res;
}
#undef SKP_ADD_SAT32
SKP_INLINE SKP_int32 SKP_ADD_SAT32(SKP_int32 a32, SKP_int32 b32){
SKP_int32 res;
res = ((((a32) + (b32)) & 0x80000000) == 0 ? \
((((a32) & (b32)) & 0x80000000) != 0 ? SKP_int32_MIN : (a32)+(b32)) : \
((((a32) | (b32)) & 0x80000000) == 0 ? SKP_int32_MAX : (a32)+(b32)) );
SKP_assert( res == SKP_SAT32( ( SKP_int64 )a32 + ( SKP_int64 )b32 ) );
return res;
}
#undef SKP_ADD_SAT64
SKP_INLINE SKP_int64 SKP_ADD_SAT64( SKP_int64 a64, SKP_int64 b64 ) {
SKP_int64 res;
res = ((((a64) + (b64)) & 0x8000000000000000LL) == 0 ? \
((((a64) & (b64)) & 0x8000000000000000LL) != 0 ? SKP_int64_MIN : (a64)+(b64)) : \
((((a64) | (b64)) & 0x8000000000000000LL) == 0 ? SKP_int64_MAX : (a64)+(b64)) );
if( res != a64 + b64 ) {
// Check that we saturated to the correct extreme value
SKP_assert( ( res == SKP_int64_MAX && ( ( a64 >> 1 ) + ( b64 >> 1 ) > ( SKP_int64_MAX >> 3 ) ) ) ||
( res == SKP_int64_MIN && ( ( a64 >> 1 ) + ( b64 >> 1 ) < ( SKP_int64_MIN >> 3 ) ) ) );
} else {
// Saturation not necessary
SKP_assert( res == a64 + b64 );
}
return res;
}
#undef SKP_SUB_SAT16
SKP_INLINE SKP_int16 SKP_SUB_SAT16( SKP_int16 a16, SKP_int16 b16 ) {
SKP_int16 res;
res = (SKP_int16)SKP_SAT16( SKP_SUB32( (SKP_int32)(a16), (b16) ) );
SKP_assert( res == SKP_SAT16( ( SKP_int32 )a16 - ( SKP_int32 )b16 ) );
return res;
}
#undef SKP_SUB_SAT32
SKP_INLINE SKP_int32 SKP_SUB_SAT32( SKP_int32 a32, SKP_int32 b32 ) {
SKP_int32 res;
res = ((((a32)-(b32)) & 0x80000000) == 0 ? \
(( (a32) & ((b32)^0x80000000) & 0x80000000) ? SKP_int32_MIN : (a32)-(b32)) : \
((((a32)^0x80000000) & (b32) & 0x80000000) ? SKP_int32_MAX : (a32)-(b32)) );
SKP_assert( res == SKP_SAT32( ( SKP_int64 )a32 - ( SKP_int64 )b32 ) );
return res;
}
#undef SKP_SUB_SAT64
SKP_INLINE SKP_int64 SKP_SUB_SAT64( SKP_int64 a64, SKP_int64 b64 ) {
SKP_int64 res;
res = ((((a64)-(b64)) & 0x8000000000000000LL) == 0 ? \
(( (a64) & ((b64)^0x8000000000000000LL) & 0x8000000000000000LL) ? SKP_int64_MIN : (a64)-(b64)) : \
((((a64)^0x8000000000000000LL) & (b64) & 0x8000000000000000LL) ? SKP_int64_MAX : (a64)-(b64)) );
if( res != a64 - b64 ) {
// Check that we saturated to the correct extreme value
SKP_assert( ( res == SKP_int64_MAX && ( ( a64 >> 1 ) + ( b64 >> 1 ) > ( SKP_int64_MAX >> 3 ) ) ) ||
( res == SKP_int64_MIN && ( ( a64 >> 1 ) + ( b64 >> 1 ) < ( SKP_int64_MIN >> 3 ) ) ) );
} else {
// Saturation not necessary
SKP_assert( res == a64 - b64 );
}
return res;
}
#undef SKP_MUL
SKP_INLINE SKP_int32 SKP_MUL(SKP_int32 a32, SKP_int32 b32){
SKP_int32 ret;
SKP_int64 ret64; // Will easily show how many bits that are needed
ret = a32 * b32;
ret64 = (SKP_int64)a32 * (SKP_int64)b32;
SKP_assert((SKP_int64)ret == ret64 ); //Check output overflow
return ret;
}
#undef SKP_MUL_uint
SKP_INLINE SKP_uint32 SKP_MUL_uint(SKP_uint32 a32, SKP_uint32 b32){
SKP_uint32 ret;
ret = a32 * b32;
SKP_assert((SKP_uint64)ret == (SKP_uint64)a32 * (SKP_uint64)b32); //Check output overflow
return ret;
}
#undef SKP_MLA
SKP_INLINE SKP_int32 SKP_MLA(SKP_int32 a32, SKP_int32 b32, SKP_int32 c32){
SKP_int32 ret;
ret = a32 + b32 * c32;
SKP_assert((SKP_int64)ret == (SKP_int64)a32 + (SKP_int64)b32 * (SKP_int64)c32); //Check output overflow
return ret;
}
#undef SKP_MLA_uint
SKP_INLINE SKP_int32 SKP_MLA_uint(SKP_uint32 a32, SKP_uint32 b32, SKP_uint32 c32){
SKP_uint32 ret;
ret = a32 + b32 * c32;
SKP_assert((SKP_int64)ret == (SKP_int64)a32 + (SKP_int64)b32 * (SKP_int64)c32); //Check output overflow
return ret;
}
#undef SKP_SMULWB
SKP_INLINE SKP_int32 SKP_SMULWB(SKP_int32 a32, SKP_int32 b32){
SKP_int32 ret;
ret = (a32 >> 16) * (SKP_int32)((SKP_int16)b32) + (((a32 & 0x0000FFFF) * (SKP_int32)((SKP_int16)b32)) >> 16);
SKP_assert((SKP_int64)ret == ((SKP_int64)a32 * (SKP_int16)b32) >> 16);
return ret;
}
#undef SKP_SMLAWB
SKP_INLINE SKP_int32 SKP_SMLAWB(SKP_int32 a32, SKP_int32 b32, SKP_int32 c32){
SKP_int32 ret;
ret = SKP_ADD32( a32, SKP_SMULWB( b32, c32 ) );
SKP_assert(SKP_ADD32( a32, SKP_SMULWB( b32, c32 ) ) == SKP_ADD_SAT32( a32, SKP_SMULWB( b32, c32 ) ));
return ret;
}
#undef SKP_SMULWT
SKP_INLINE SKP_int32 SKP_SMULWT(SKP_int32 a32, SKP_int32 b32){
SKP_int32 ret;
ret = (a32 >> 16) * (b32 >> 16) + (((a32 & 0x0000FFFF) * (b32 >> 16)) >> 16);
SKP_assert((SKP_int64)ret == ((SKP_int64)a32 * (b32 >> 16)) >> 16);
return ret;
}
#undef SKP_SMLAWT
SKP_INLINE SKP_int32 SKP_SMLAWT(SKP_int32 a32, SKP_int32 b32, SKP_int32 c32){
SKP_int32 ret;
ret = a32 + ((b32 >> 16) * (c32 >> 16)) + (((b32 & 0x0000FFFF) * ((c32 >> 16)) >> 16));
SKP_assert((SKP_int64)ret == (SKP_int64)a32 + (((SKP_int64)b32 * (c32 >> 16)) >> 16));
return ret;
}
#undef SKP_SMULL
SKP_INLINE SKP_int64 SKP_SMULL(SKP_int64 a64, SKP_int64 b64){
SKP_int64 ret64;
ret64 = a64 * b64;
if( b64 != 0 ) {
SKP_assert( a64 == (ret64 / b64) );
} else if( a64 != 0 ) {
SKP_assert( b64 == (ret64 / a64) );
}
return ret64;
}
// no checking needed for SKP_SMULBB
#undef SKP_SMLABB
SKP_INLINE SKP_int32 SKP_SMLABB(SKP_int32 a32, SKP_int32 b32, SKP_int32 c32){
SKP_int32 ret;
ret = a32 + (SKP_int32)((SKP_int16)b32) * (SKP_int32)((SKP_int16)c32);
SKP_assert((SKP_int64)ret == (SKP_int64)a32 + (SKP_int64)b32 * (SKP_int16)c32);
return ret;
}
// no checking needed for SKP_SMULBT
#undef SKP_SMLABT
SKP_INLINE SKP_int32 SKP_SMLABT(SKP_int32 a32, SKP_int32 b32, SKP_int32 c32){
SKP_int32 ret;
ret = a32 + ((SKP_int32)((SKP_int16)b32)) * (c32 >> 16);
SKP_assert((SKP_int64)ret == (SKP_int64)a32 + (SKP_int64)b32 * (c32 >> 16));
return ret;
}
// no checking needed for SKP_SMULTT
#undef SKP_SMLATT
SKP_INLINE SKP_int32 SKP_SMLATT(SKP_int32 a32, SKP_int32 b32, SKP_int32 c32){
SKP_int32 ret;
ret = a32 + (b32 >> 16) * (c32 >> 16);
SKP_assert((SKP_int64)ret == (SKP_int64)a32 + (b32 >> 16) * (c32 >> 16));
return ret;
}
#undef SKP_SMULWW
SKP_INLINE SKP_int32 SKP_SMULWW(SKP_int32 a32, SKP_int32 b32){
SKP_int32 ret, tmp1, tmp2;
SKP_int64 ret64;
ret = SKP_SMULWB( a32, b32 );
tmp1 = SKP_RSHIFT_ROUND( b32, 16 );
tmp2 = SKP_MUL( a32, tmp1 );
SKP_assert( (SKP_int64)tmp2 == (SKP_int64) a32 * (SKP_int64) tmp1 );
tmp1 = ret;
ret = SKP_ADD32( tmp1, tmp2 );
SKP_assert( SKP_ADD32( tmp1, tmp2 ) == SKP_ADD_SAT32( tmp1, tmp2 ) );
ret64 = SKP_RSHIFT64( SKP_SMULL( a32, b32 ), 16 );
SKP_assert( (SKP_int64)ret == ret64 );
return ret;
}
#undef SKP_SMLAWW
SKP_INLINE SKP_int32 SKP_SMLAWW(SKP_int32 a32, SKP_int32 b32, SKP_int32 c32){
SKP_int32 ret, tmp;
tmp = SKP_SMULWW( b32, c32 );
ret = SKP_ADD32( a32, tmp );
SKP_assert( ret == SKP_ADD_SAT32( a32, tmp ) );
return ret;
}
// multiply-accumulate macros that allow overflow in the addition (ie, no asserts in debug mode)
#undef SKP_MLA_ovflw
#define SKP_MLA_ovflw(a32, b32, c32) ((a32) + ((b32) * (c32)))
#undef SKP_SMLABB_ovflw
#define SKP_SMLABB_ovflw(a32, b32, c32) ((a32) + ((SKP_int32)((SKP_int16)(b32))) * (SKP_int32)((SKP_int16)(c32)))
#undef SKP_SMLABT_ovflw
#define SKP_SMLABT_ovflw(a32, b32, c32) ((a32) + ((SKP_int32)((SKP_int16)(b32))) * ((c32) >> 16))
#undef SKP_SMLATT_ovflw
#define SKP_SMLATT_ovflw(a32, b32, c32) ((a32) + ((b32) >> 16) * ((c32) >> 16))
#undef SKP_SMLAWB_ovflw
#define SKP_SMLAWB_ovflw(a32, b32, c32) ((a32) + ((((b32) >> 16) * (SKP_int32)((SKP_int16)(c32))) + ((((b32) & 0x0000FFFF) * (SKP_int32)((SKP_int16)(c32))) >> 16)))
#undef SKP_SMLAWT_ovflw
#define SKP_SMLAWT_ovflw(a32, b32, c32) ((a32) + (((b32) >> 16) * ((c32) >> 16)) + ((((b32) & 0x0000FFFF) * ((c32) >> 16)) >> 16))
// no checking needed for SKP_SMULL
// no checking needed for SKP_SMLAL
// no checking needed for SKP_SMLALBB
// no checking needed for SigProcFIX_CLZ16
// no checking needed for SigProcFIX_CLZ32
#undef SKP_DIV32
SKP_INLINE SKP_int32 SKP_DIV32(SKP_int32 a32, SKP_int32 b32){
SKP_assert( b32 != 0 );
return a32 / b32;
}
#undef SKP_DIV32_16
SKP_INLINE SKP_int32 SKP_DIV32_16(SKP_int32 a32, SKP_int32 b32){
SKP_assert( b32 != 0 );
SKP_assert( b32 <= SKP_int16_MAX );
SKP_assert( b32 >= SKP_int16_MIN );
return a32 / b32;
}
// no checking needed for SKP_SAT8
// no checking needed for SKP_SAT16
// no checking needed for SKP_SAT32
// no checking needed for SKP_POS_SAT32
// no checking needed for SKP_ADD_POS_SAT8
// no checking needed for SKP_ADD_POS_SAT16
// no checking needed for SKP_ADD_POS_SAT32
// no checking needed for SKP_ADD_POS_SAT64
#undef SKP_LSHIFT8
SKP_INLINE SKP_int8 SKP_LSHIFT8(SKP_int8 a, SKP_int32 shift){
SKP_int8 ret;
ret = a << shift;
SKP_assert(shift >= 0);
SKP_assert(shift < 8);
SKP_assert((SKP_int64)ret == ((SKP_int64)a) << shift);
return ret;
}
#undef SKP_LSHIFT16
SKP_INLINE SKP_int16 SKP_LSHIFT16(SKP_int16 a, SKP_int32 shift){
SKP_int16 ret;
ret = a << shift;
SKP_assert(shift >= 0);
SKP_assert(shift < 16);
SKP_assert((SKP_int64)ret == ((SKP_int64)a) << shift);
return ret;
}
#undef SKP_LSHIFT32
SKP_INLINE SKP_int32 SKP_LSHIFT32(SKP_int32 a, SKP_int32 shift){
SKP_int32 ret;
ret = a << shift;
SKP_assert(shift >= 0);
SKP_assert(shift < 32);
SKP_assert((SKP_int64)ret == ((SKP_int64)a) << shift);
return ret;
}
#undef SKP_LSHIFT64
SKP_INLINE SKP_int64 SKP_LSHIFT64(SKP_int64 a, SKP_int shift){
SKP_assert(shift >= 0);
SKP_assert(shift < 64);
return a << shift;
}
#undef SKP_LSHIFT_ovflw
SKP_INLINE SKP_int32 SKP_LSHIFT_ovflw(SKP_int32 a, SKP_int32 shift){
SKP_assert(shift >= 0); /* no check for overflow */
return a << shift;
}
#undef SKP_LSHIFT_uint
SKP_INLINE SKP_uint32 SKP_LSHIFT_uint(SKP_uint32 a, SKP_int32 shift){
SKP_uint32 ret;
ret = a << shift;
SKP_assert(shift >= 0);
SKP_assert((SKP_int64)ret == ((SKP_int64)a) << shift);
return ret;
}
#undef SKP_RSHIFT8
SKP_INLINE SKP_int8 SKP_RSHIFT8(SKP_int8 a, SKP_int32 shift){
SKP_assert(shift >= 0);
SKP_assert(shift < 8);
return a >> shift;
}
#undef SKP_RSHIFT16
SKP_INLINE SKP_int16 SKP_RSHIFT16(SKP_int16 a, SKP_int32 shift){
SKP_assert(shift >= 0);
SKP_assert(shift < 16);
return a >> shift;
}
#undef SKP_RSHIFT32
SKP_INLINE SKP_int32 SKP_RSHIFT32(SKP_int32 a, SKP_int32 shift){
SKP_assert(shift >= 0);
SKP_assert(shift < 32);
return a >> shift;
}
#undef SKP_RSHIFT64
SKP_INLINE SKP_int64 SKP_RSHIFT64(SKP_int64 a, SKP_int64 shift){
SKP_assert(shift >= 0);
SKP_assert(shift <= 63);
return a >> shift;
}
#undef SKP_RSHIFT_uint
SKP_INLINE SKP_uint32 SKP_RSHIFT_uint(SKP_uint32 a, SKP_int32 shift){
SKP_assert(shift >= 0);
SKP_assert(shift <= 32);
return a >> shift;
}
#undef SKP_ADD_LSHIFT
SKP_INLINE SKP_int32 SKP_ADD_LSHIFT(SKP_int32 a, SKP_int32 b, SKP_int32 shift){
SKP_int32 ret;
SKP_assert(shift >= 0);
SKP_assert(shift <= 31);
ret = a + (b << shift);
SKP_assert((SKP_int64)ret == (SKP_int64)a + (((SKP_int64)b) << shift));
return ret; // shift >= 0
}
#undef SKP_ADD_LSHIFT32
SKP_INLINE SKP_int32 SKP_ADD_LSHIFT32(SKP_int32 a, SKP_int32 b, SKP_int32 shift){
SKP_int32 ret;
SKP_assert(shift >= 0);
SKP_assert(shift <= 31);
ret = a + (b << shift);
SKP_assert((SKP_int64)ret == (SKP_int64)a + (((SKP_int64)b) << shift));
return ret; // shift >= 0
}
#undef SKP_ADD_LSHIFT_uint
SKP_INLINE SKP_uint32 SKP_ADD_LSHIFT_uint(SKP_uint32 a, SKP_uint32 b, SKP_int32 shift){
SKP_uint32 ret;
SKP_assert(shift >= 0);
SKP_assert(shift <= 32);
ret = a + (b << shift);
SKP_assert((SKP_int64)ret == (SKP_int64)a + (((SKP_int64)b) << shift));
return ret; // shift >= 0
}
#undef SKP_ADD_RSHIFT
SKP_INLINE SKP_int32 SKP_ADD_RSHIFT(SKP_int32 a, SKP_int32 b, SKP_int32 shift){
SKP_int32 ret;
SKP_assert(shift >= 0);
SKP_assert(shift <= 31);
ret = a + (b >> shift);
SKP_assert((SKP_int64)ret == (SKP_int64)a + (((SKP_int64)b) >> shift));
return ret; // shift > 0
}
#undef SKP_ADD_RSHIFT32
SKP_INLINE SKP_int32 SKP_ADD_RSHIFT32(SKP_int32 a, SKP_int32 b, SKP_int32 shift){
SKP_int32 ret;
SKP_assert(shift >= 0);
SKP_assert(shift <= 31);
ret = a + (b >> shift);
SKP_assert((SKP_int64)ret == (SKP_int64)a + (((SKP_int64)b) >> shift));
return ret; // shift > 0
}
#undef SKP_ADD_RSHIFT_uint
SKP_INLINE SKP_uint32 SKP_ADD_RSHIFT_uint(SKP_uint32 a, SKP_uint32 b, SKP_int32 shift){
SKP_uint32 ret;
SKP_assert(shift >= 0);
SKP_assert(shift <= 32);
ret = a + (b >> shift);
SKP_assert((SKP_int64)ret == (SKP_int64)a + (((SKP_int64)b) >> shift));
return ret; // shift > 0
}
#undef SKP_SUB_LSHIFT32
SKP_INLINE SKP_int32 SKP_SUB_LSHIFT32(SKP_int32 a, SKP_int32 b, SKP_int32 shift){
SKP_int32 ret;
SKP_assert(shift >= 0);
SKP_assert(shift <= 31);
ret = a - (b << shift);
SKP_assert((SKP_int64)ret == (SKP_int64)a - (((SKP_int64)b) << shift));
return ret; // shift >= 0
}
#undef SKP_SUB_RSHIFT32
SKP_INLINE SKP_int32 SKP_SUB_RSHIFT32(SKP_int32 a, SKP_int32 b, SKP_int32 shift){
SKP_int32 ret;
SKP_assert(shift >= 0);
SKP_assert(shift <= 31);
ret = a - (b >> shift);
SKP_assert((SKP_int64)ret == (SKP_int64)a - (((SKP_int64)b) >> shift));
return ret; // shift > 0
}
#undef SKP_RSHIFT_ROUND
SKP_INLINE SKP_int32 SKP_RSHIFT_ROUND(SKP_int32 a, SKP_int32 shift){
SKP_int32 ret;
SKP_assert(shift > 0); /* the marco definition can't handle a shift of zero */
SKP_assert(shift < 32);
ret = shift == 1 ? (a >> 1) + (a & 1) : ((a >> (shift - 1)) + 1) >> 1;
SKP_assert((SKP_int64)ret == ((SKP_int64)a + ((SKP_int64)1 << (shift - 1))) >> shift);
return ret;
}
#undef SKP_RSHIFT_ROUND64
SKP_INLINE SKP_int64 SKP_RSHIFT_ROUND64(SKP_int64 a, SKP_int32 shift){
SKP_int64 ret;
SKP_assert(shift > 0); /* the marco definition can't handle a shift of zero */
SKP_assert(shift < 64);
ret = shift == 1 ? (a >> 1) + (a & 1) : ((a >> (shift - 1)) + 1) >> 1;
return ret;
}
// SKP_abs is used on floats also, so doesn't work...
//#undef SKP_abs
//SKP_INLINE SKP_int32 SKP_abs(SKP_int32 a){
// SKP_assert(a != 0x80000000);
// return (((a) > 0) ? (a) : -(a)); // Be careful, SKP_abs returns wrong when input equals to SKP_intXX_MIN
//}
#undef SKP_abs_int64
SKP_INLINE SKP_int64 SKP_abs_int64(SKP_int64 a){
SKP_assert(a != 0x8000000000000000);
return (((a) > 0) ? (a) : -(a)); // Be careful, SKP_abs returns wrong when input equals to SKP_intXX_MIN
}
#undef SKP_abs_int32
SKP_INLINE SKP_int32 SKP_abs_int32(SKP_int32 a){
SKP_assert(a != 0x80000000);
return abs(a);
}
#undef SKP_CHECK_FIT8
SKP_INLINE SKP_int8 SKP_CHECK_FIT8( SKP_int64 a ){
SKP_int8 ret;
ret = (SKP_int8)a;
SKP_assert( (SKP_int64)ret == a );
return( ret );
}
#undef SKP_CHECK_FIT16
SKP_INLINE SKP_int16 SKP_CHECK_FIT16( SKP_int64 a ){
SKP_int16 ret;
ret = (SKP_int16)a;
SKP_assert( (SKP_int64)ret == a );
return( ret );
}
#undef SKP_CHECK_FIT32
SKP_INLINE SKP_int32 SKP_CHECK_FIT32( SKP_int64 a ){
SKP_int32 ret;
ret = (SKP_int32)a;
SKP_assert( (SKP_int64)ret == a );
return( ret );
}
// no checking for SKP_NSHIFT_MUL_32_32
// no checking for SKP_NSHIFT_MUL_16_16
// no checking needed for SKP_min
// no checking needed for SKP_max
// no checking needed for SKP_sign
#endif
#endif