mirror of
https://github.com/xiph/opus.git
synced 2025-05-17 08:58:30 +00:00
123 lines
4.6 KiB
Python
Executable file
123 lines
4.6 KiB
Python
Executable file
#!/usr/bin/python3
|
|
# train_wavenet_audio.py
|
|
# Jean-Marc Valin
|
|
#
|
|
# Train a LPCNet model (note not a Wavenet model)
|
|
|
|
import lpcnet
|
|
import sys
|
|
import numpy as np
|
|
from keras.optimizers import Adam
|
|
from keras.callbacks import ModelCheckpoint
|
|
from ulaw import ulaw2lin, lin2ulaw
|
|
import keras.backend as K
|
|
import h5py
|
|
|
|
import tensorflow as tf
|
|
from keras.backend.tensorflow_backend import set_session
|
|
config = tf.ConfigProto()
|
|
|
|
# use this option to reserve GPU memory, e.g. for running more than
|
|
# one thing at a time. Best to disable for GPUs with small memory
|
|
config.gpu_options.per_process_gpu_memory_fraction = 0.44
|
|
|
|
set_session(tf.Session(config=config))
|
|
|
|
nb_epochs = 120
|
|
|
|
# Try reducing batch_size if you run out of memory on your GPU
|
|
batch_size = 64
|
|
|
|
model, _, _ = lpcnet.new_lpcnet_model()
|
|
|
|
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['sparse_categorical_accuracy'])
|
|
model.summary()
|
|
|
|
exc_file = sys.argv[1] # not used at present
|
|
feature_file = sys.argv[2]
|
|
pred_file = sys.argv[3] # LPC predictor samples. Not used at present, see below
|
|
pcm_file = sys.argv[4] # 16 bit unsigned short PCM samples
|
|
frame_size = 160
|
|
nb_features = 55
|
|
nb_used_features = model.nb_used_features
|
|
feature_chunk_size = 15
|
|
pcm_chunk_size = frame_size*feature_chunk_size
|
|
|
|
# u for unquantised, load 16 bit PCM samples and convert to mu-law
|
|
|
|
udata = np.fromfile(pcm_file, dtype='int16')
|
|
data = lin2ulaw(udata)
|
|
nb_frames = len(data)//pcm_chunk_size
|
|
|
|
features = np.fromfile(feature_file, dtype='float32')
|
|
|
|
# limit to discrete number of frames
|
|
data = data[:nb_frames*pcm_chunk_size]
|
|
udata = udata[:nb_frames*pcm_chunk_size]
|
|
features = features[:nb_frames*feature_chunk_size*nb_features]
|
|
|
|
# Noise injection: the idea is that the real system is going to be
|
|
# predicting samples based on previously predicted samples rather than
|
|
# from the original. Since the previously predicted samples aren't
|
|
# expected to be so good, I add noise to the training data. Exactly
|
|
# how the noise is added makes a huge difference
|
|
|
|
in_data = np.concatenate([data[0:1], data[:-1]]);
|
|
noise = np.concatenate([np.zeros((len(data)*1//5)), np.random.randint(-3, 3, len(data)*1//5), np.random.randint(-2, 2, len(data)*1//5), np.random.randint(-1, 1, len(data)*2//5)])
|
|
#noise = np.round(np.concatenate([np.zeros((len(data)*1//5)), np.random.laplace(0, 1.2, len(data)*1//5), np.random.laplace(0, .77, len(data)*1//5), np.random.laplace(0, .33, len(data)*1//5), np.random.randint(-1, 1, len(data)*1//5)]))
|
|
in_data = in_data + noise
|
|
in_data = np.clip(in_data, 0, 255)
|
|
|
|
features = np.reshape(features, (nb_frames*feature_chunk_size, nb_features))
|
|
|
|
# Note: the LPC predictor output is now calculated by the loop below, this code was
|
|
# for an ealier version that implemented the prediction filter in C
|
|
|
|
upred = np.fromfile(pred_file, dtype='int16')
|
|
upred = upred[:nb_frames*pcm_chunk_size]
|
|
|
|
# Use 16th order LPC to generate LPC prediction output upred[] and (in
|
|
# mu-law form) pred[]
|
|
|
|
pred_in = ulaw2lin(in_data)
|
|
for i in range(2, nb_frames*feature_chunk_size):
|
|
upred[i*frame_size:(i+1)*frame_size] = 0
|
|
for k in range(16):
|
|
upred[i*frame_size:(i+1)*frame_size] = upred[i*frame_size:(i+1)*frame_size] - \
|
|
pred_in[i*frame_size-k:(i+1)*frame_size-k]*features[i, nb_features-16+k]
|
|
|
|
pred = lin2ulaw(upred)
|
|
|
|
in_data = np.reshape(in_data, (nb_frames, pcm_chunk_size, 1))
|
|
in_data = in_data.astype('uint8')
|
|
|
|
# LPC residual, which is the difference between the input speech and
|
|
# the predictor output, with a slight time shift this is also the
|
|
# ideal excitation in_exc
|
|
|
|
out_data = lin2ulaw(udata-upred)
|
|
in_exc = np.concatenate([out_data[0:1], out_data[:-1]]);
|
|
|
|
out_data = np.reshape(out_data, (nb_frames, pcm_chunk_size, 1))
|
|
out_data = out_data.astype('uint8')
|
|
|
|
in_exc = np.reshape(in_exc, (nb_frames, pcm_chunk_size, 1))
|
|
in_exc = in_exc.astype('uint8')
|
|
|
|
|
|
features = np.reshape(features, (nb_frames, feature_chunk_size, nb_features))
|
|
features = features[:, :, :nb_used_features]
|
|
features[:,:,18:36] = 0
|
|
pred = np.reshape(pred, (nb_frames, pcm_chunk_size, 1))
|
|
pred = pred.astype('uint8')
|
|
|
|
periods = (50*features[:,:,36:37]+100).astype('int16')
|
|
|
|
in_data = np.concatenate([in_data, pred], axis=-1)
|
|
|
|
# dump models to disk as we go
|
|
checkpoint = ModelCheckpoint('lpcnet9_384_10_G16_{epoch:02d}.h5')
|
|
|
|
#model.load_weights('wavenet4f2_30.h5')
|
|
model.compile(optimizer=Adam(0.001, amsgrad=True, decay=5e-5), loss='sparse_categorical_crossentropy', metrics=['sparse_categorical_accuracy'])
|
|
model.fit([in_data, in_exc, features, periods], out_data, batch_size=batch_size, epochs=nb_epochs, validation_split=0.0, callbacks=[checkpoint, lpcnet.Sparsify(2000, 40000, 400, 0.1)])
|