opus/dnn/torch/rdovae
Jean-Marc Valin b0620c0bf9
Using sparse GRUs in DRED decoder
Saves ~270 kB of weights in the decoder
2023-11-15 04:08:50 -05:00
..
packets Remove trailing whitespace in dnn 2023-06-22 13:58:37 -07:00
rdovae Using sparse GRUs in DRED decoder 2023-11-15 04:08:50 -05:00
export_rdovae_weights.py Using sparse GRUs in DRED decoder 2023-11-15 04:08:50 -05:00
fec_encoder.py Remove trailing whitespace in dnn 2023-06-22 13:58:37 -07:00
import_rdovae_weights.py Remove trailing whitespace in dnn 2023-06-22 13:58:37 -07:00
README.md added pytorch implementation of RDOVAE 2022-11-23 11:02:29 +00:00
requirements.txt Support for dumping LinearLayer in weight-exchange 2023-07-27 19:55:17 -04:00
train_rdovae.py Using sparse GRUs in DRED decoder 2023-11-15 04:08:50 -05:00

Rate-Distortion-Optimized Variational Auto-Encoder

Setup

The python code requires python >= 3.6 and has been tested with python 3.6 and python 3.10. To install requirements run

python -m pip install -r requirements.txt

Training

To generate training data use dump date from the main LPCNet repo

./dump_data -train 16khz_speech_input.s16 features.f32 data.s16

To train the model, simply run

python train_rdovae.py features.f32 output_folder

To train on CUDA device add --cuda-visible-devices idx.

ToDo

  • Upload checkpoints and add URLs