435 lines
14 KiB
C
435 lines
14 KiB
C
/* (C) 2007-2008 Jean-Marc Valin, CSIRO
|
|
*/
|
|
/*
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions
|
|
are met:
|
|
|
|
- Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
|
|
- Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
|
|
- Neither the name of the Xiph.org Foundation nor the names of its
|
|
contributors may be used to endorse or promote products derived from
|
|
this software without specific prior written permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
|
|
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include "config.h"
|
|
#endif
|
|
|
|
#include <math.h>
|
|
#include "bands.h"
|
|
#include "modes.h"
|
|
#include "vq.h"
|
|
#include "cwrs.h"
|
|
#include "stack_alloc.h"
|
|
#include "os_support.h"
|
|
#include "mathops.h"
|
|
|
|
void exp_rotation(celt_norm_t *X, int len, int dir, int stride, int iter)
|
|
{
|
|
int i, k;
|
|
celt_word16_t c, s;
|
|
/* Equivalent to cos(.3) and sin(.3) */
|
|
c = QCONST16(0.95534,15);
|
|
s = dir*QCONST16(0.29552,15);
|
|
for (k=0;k<iter;k++)
|
|
{
|
|
/* We could use MULT16_16_P15 instead of MULT16_16_Q15 for more accuracy,
|
|
but at this point, I really don't think it's necessary */
|
|
for (i=0;i<len-stride;i++)
|
|
{
|
|
celt_norm_t x1, x2;
|
|
x1 = X[i];
|
|
x2 = X[i+stride];
|
|
X[i] = MULT16_16_Q15(c,x1) - MULT16_16_Q15(s,x2);
|
|
X[i+stride] = MULT16_16_Q15(c,x2) + MULT16_16_Q15(s,x1);
|
|
}
|
|
for (i=len-2*stride-1;i>=0;i--)
|
|
{
|
|
celt_norm_t x1, x2;
|
|
x1 = X[i];
|
|
x2 = X[i+stride];
|
|
X[i] = MULT16_16_Q15(c,x1) - MULT16_16_Q15(s,x2);
|
|
X[i+stride] = MULT16_16_Q15(c,x2) + MULT16_16_Q15(s,x1);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
const celt_word16_t sqrtC_1[2] = {QCONST16(1.f, 14), QCONST16(1.414214f, 14)};
|
|
|
|
#ifdef FIXED_POINT
|
|
/* Compute the amplitude (sqrt energy) in each of the bands */
|
|
void compute_band_energies(const CELTMode *m, const celt_sig_t *X, celt_ener_t *bank)
|
|
{
|
|
int i, c, B, C;
|
|
const celt_int16_t *eBands = m->eBands;
|
|
B = m->nbMdctBlocks;
|
|
C = m->nbChannels;
|
|
for (c=0;c<C;c++)
|
|
{
|
|
for (i=0;i<m->nbEBands;i++)
|
|
{
|
|
int j;
|
|
celt_word32_t maxval=0;
|
|
celt_word32_t sum = 0;
|
|
for (j=B*eBands[i];j<B*eBands[i+1];j++)
|
|
maxval = MAX32(maxval, ABS32(X[j*C+c]));
|
|
if (maxval > 0)
|
|
{
|
|
int shift = celt_zlog2(maxval)-10;
|
|
for (j=B*eBands[i];j<B*eBands[i+1];j++)
|
|
sum += VSHR32(X[j*C+c],shift)*VSHR32(X[j*C+c],shift);
|
|
/* We're adding one here to make damn sure we never end up with a pitch vector that's
|
|
larger than unity norm */
|
|
bank[i*C+c] = 1+VSHR32(EXTEND32(celt_sqrt(sum)),-shift);
|
|
} else {
|
|
bank[i*C+c] = 0;
|
|
}
|
|
/*printf ("%f ", bank[i*C+c]);*/
|
|
}
|
|
}
|
|
/*printf ("\n");*/
|
|
}
|
|
|
|
/* Normalise each band such that the energy is one. */
|
|
void normalise_bands(const CELTMode *m, const celt_sig_t *freq, celt_norm_t *X, const celt_ener_t *bank)
|
|
{
|
|
int i, c, B, C;
|
|
const celt_int16_t *eBands = m->eBands;
|
|
B = m->nbMdctBlocks;
|
|
C = m->nbChannels;
|
|
for (c=0;c<C;c++)
|
|
{
|
|
for (i=0;i<m->nbEBands;i++)
|
|
{
|
|
celt_word16_t g;
|
|
int j,shift;
|
|
celt_word16_t E;
|
|
shift = celt_zlog2(bank[i*C+c])-13;
|
|
E = VSHR32(bank[i*C+c], shift);
|
|
if (E>0)
|
|
g = EXTRACT16(celt_div(QCONST32(1.f,28),MULT16_16_Q14(E,sqrtC_1[C-1])));
|
|
else
|
|
g = 0;
|
|
for (j=B*eBands[i];j<B*eBands[i+1];j++)
|
|
X[j*C+c] = MULT16_16_Q14(VSHR32(freq[j*C+c],shift),g);
|
|
}
|
|
}
|
|
for (i=B*C*eBands[m->nbEBands];i<B*C*eBands[m->nbEBands+1];i++)
|
|
X[i] = 0;
|
|
}
|
|
|
|
void renormalise_bands(const CELTMode *m, celt_norm_t *X)
|
|
{
|
|
int i;
|
|
VARDECL(celt_ener_t, tmpE);
|
|
VARDECL(celt_sig_t, freq);
|
|
SAVE_STACK;
|
|
ALLOC(tmpE, m->nbEBands*m->nbChannels, celt_ener_t);
|
|
ALLOC(freq, m->nbMdctBlocks*m->nbChannels*m->eBands[m->nbEBands+1], celt_sig_t);
|
|
for (i=0;i<m->nbMdctBlocks*m->nbChannels*m->eBands[m->nbEBands+1];i++)
|
|
freq[i] = SHL32(EXTEND32(X[i]), 10);
|
|
compute_band_energies(m, freq, tmpE);
|
|
normalise_bands(m, freq, X, tmpE);
|
|
RESTORE_STACK;
|
|
}
|
|
#else
|
|
/* Compute the amplitude (sqrt energy) in each of the bands */
|
|
void compute_band_energies(const CELTMode *m, const celt_sig_t *X, celt_ener_t *bank)
|
|
{
|
|
int i, c, B, C;
|
|
const celt_int16_t *eBands = m->eBands;
|
|
B = m->nbMdctBlocks;
|
|
C = m->nbChannels;
|
|
for (c=0;c<C;c++)
|
|
{
|
|
for (i=0;i<m->nbEBands;i++)
|
|
{
|
|
int j;
|
|
celt_word32_t sum = 1e-10;
|
|
for (j=B*eBands[i];j<B*eBands[i+1];j++)
|
|
sum += X[j*C+c]*X[j*C+c];
|
|
bank[i*C+c] = sqrt(sum);
|
|
/*printf ("%f ", bank[i*C+c]);*/
|
|
}
|
|
}
|
|
/*printf ("\n");*/
|
|
}
|
|
|
|
/* Normalise each band such that the energy is one. */
|
|
void normalise_bands(const CELTMode *m, const celt_sig_t *freq, celt_norm_t *X, const celt_ener_t *bank)
|
|
{
|
|
int i, c, B, C;
|
|
const celt_int16_t *eBands = m->eBands;
|
|
B = m->nbMdctBlocks;
|
|
C = m->nbChannels;
|
|
for (c=0;c<C;c++)
|
|
{
|
|
for (i=0;i<m->nbEBands;i++)
|
|
{
|
|
int j;
|
|
celt_word16_t g = 1.f/(1e-10+bank[i*C+c]*sqrt(C));
|
|
for (j=B*eBands[i];j<B*eBands[i+1];j++)
|
|
X[j*C+c] = freq[j*C+c]*g;
|
|
}
|
|
}
|
|
for (i=B*C*eBands[m->nbEBands];i<B*C*eBands[m->nbEBands+1];i++)
|
|
X[i] = 0;
|
|
}
|
|
|
|
void renormalise_bands(const CELTMode *m, celt_norm_t *X)
|
|
{
|
|
VARDECL(celt_ener_t, tmpE);
|
|
SAVE_STACK;
|
|
ALLOC(tmpE, m->nbEBands*m->nbChannels, celt_ener_t);
|
|
compute_band_energies(m, X, tmpE);
|
|
normalise_bands(m, X, X, tmpE);
|
|
RESTORE_STACK;
|
|
}
|
|
#endif
|
|
|
|
/* De-normalise the energy to produce the synthesis from the unit-energy bands */
|
|
void denormalise_bands(const CELTMode *m, const celt_norm_t *X, celt_sig_t *freq, const celt_ener_t *bank)
|
|
{
|
|
int i, c, B, C;
|
|
const celt_int16_t *eBands = m->eBands;
|
|
B = m->nbMdctBlocks;
|
|
C = m->nbChannels;
|
|
if (C>2)
|
|
celt_fatal("denormalise_bands() not implemented for >2 channels");
|
|
for (c=0;c<C;c++)
|
|
{
|
|
for (i=0;i<m->nbEBands;i++)
|
|
{
|
|
int j;
|
|
celt_word32_t g = MULT16_32_Q14(sqrtC_1[C-1],bank[i*C+c]);
|
|
for (j=B*eBands[i];j<B*eBands[i+1];j++)
|
|
freq[j*C+c] = MULT16_32_Q14(X[j*C+c], g);
|
|
}
|
|
}
|
|
for (i=B*C*eBands[m->nbEBands];i<B*C*eBands[m->nbEBands+1];i++)
|
|
freq[i] = 0;
|
|
}
|
|
|
|
|
|
/* Compute the best gain for each "pitch band" */
|
|
void compute_pitch_gain(const CELTMode *m, const celt_norm_t *X, const celt_norm_t *P, celt_pgain_t *gains)
|
|
{
|
|
int i, B;
|
|
const celt_int16_t *pBands = m->pBands;
|
|
B = m->nbMdctBlocks*m->nbChannels;
|
|
|
|
for (i=0;i<m->nbPBands;i++)
|
|
{
|
|
celt_word32_t Sxy=0, Sxx=0;
|
|
int j;
|
|
/* We know we're not going to overflow because Sxx can't be more than 1 (Q28) */
|
|
for (j=B*pBands[i];j<B*pBands[i+1];j++)
|
|
{
|
|
Sxy = MAC16_16(Sxy, X[j], P[j]);
|
|
Sxx = MAC16_16(Sxx, X[j], X[j]);
|
|
}
|
|
/* No negative gain allowed */
|
|
if (Sxy < 0)
|
|
Sxy = 0;
|
|
/* Not sure how that would happen, just making sure */
|
|
if (Sxy > Sxx)
|
|
Sxy = Sxx;
|
|
/* We need to be a bit conservative (multiply gain by 0.9), otherwise the
|
|
residual doesn't quantise well */
|
|
Sxy = MULT16_32_Q15(QCONST16(.9f, 15), Sxy);
|
|
/* gain = Sxy/Sxx */
|
|
gains[i] = EXTRACT16(celt_div(Sxy,ADD32(SHR32(Sxx, PGAIN_SHIFT),EPSILON)));
|
|
/*printf ("%f ", 1-sqrt(1-gain*gain));*/
|
|
}
|
|
/*if(rand()%10==0)
|
|
{
|
|
for (i=0;i<m->nbPBands;i++)
|
|
printf ("%f ", 1-sqrt(1-gains[i]*gains[i]));
|
|
printf ("\n");
|
|
}*/
|
|
}
|
|
|
|
/* Apply the (quantised) gain to each "pitch band" */
|
|
void pitch_quant_bands(const CELTMode *m, celt_norm_t * restrict P, const celt_pgain_t * restrict gains)
|
|
{
|
|
int i, B;
|
|
const celt_int16_t *pBands = m->pBands;
|
|
B = m->nbMdctBlocks*m->nbChannels;
|
|
for (i=0;i<m->nbPBands;i++)
|
|
{
|
|
int j;
|
|
for (j=B*pBands[i];j<B*pBands[i+1];j++)
|
|
P[j] = MULT16_16_Q15(gains[i], P[j]);
|
|
/*printf ("%f ", gain);*/
|
|
}
|
|
for (i=B*pBands[m->nbPBands];i<B*pBands[m->nbPBands+1];i++)
|
|
P[i] = 0;
|
|
}
|
|
|
|
|
|
/* Quantisation of the residual */
|
|
void quant_bands(const CELTMode *m, celt_norm_t * restrict X, celt_norm_t *P, celt_mask_t *W, int total_bits, ec_enc *enc)
|
|
{
|
|
int i, j, B, bits;
|
|
const celt_int16_t *eBands = m->eBands;
|
|
VARDECL(celt_norm_t, norm);
|
|
VARDECL(int, pulses);
|
|
VARDECL(int, offsets);
|
|
SAVE_STACK;
|
|
|
|
B = m->nbMdctBlocks*m->nbChannels;
|
|
|
|
ALLOC(norm, B*eBands[m->nbEBands+1], celt_norm_t);
|
|
ALLOC(pulses, m->nbEBands, int);
|
|
ALLOC(offsets, m->nbEBands, int);
|
|
|
|
for (i=0;i<m->nbEBands;i++)
|
|
offsets[i] = 0;
|
|
/* Use a single-bit margin to guard against overrunning (make sure it's enough) */
|
|
bits = total_bits - ec_enc_tell(enc, 0) - 1;
|
|
compute_allocation(m, offsets, bits, pulses);
|
|
|
|
/*printf("bits left: %d\n", bits);
|
|
for (i=0;i<m->nbEBands;i++)
|
|
printf ("%d ", pulses[i]);
|
|
printf ("\n");*/
|
|
/*printf ("%d %d\n", ec_enc_tell(enc, 0), compute_allocation(m, m->nbPulses));*/
|
|
for (i=0;i<m->nbEBands;i++)
|
|
{
|
|
int q;
|
|
celt_word16_t n;
|
|
q = pulses[i];
|
|
n = SHL16(celt_sqrt(B*(eBands[i+1]-eBands[i])),11);
|
|
|
|
/* If pitch isn't available, use intra-frame prediction */
|
|
if (eBands[i] >= m->pitchEnd || q<=0)
|
|
{
|
|
q -= 1;
|
|
if (q<0)
|
|
intra_fold(X+B*eBands[i], B*(eBands[i+1]-eBands[i]), norm, P+B*eBands[i], B, eBands[i], eBands[m->nbEBands+1]);
|
|
else
|
|
intra_prediction(X+B*eBands[i], W+B*eBands[i], B*(eBands[i+1]-eBands[i]), q, norm, P+B*eBands[i], B, eBands[i], enc);
|
|
}
|
|
|
|
if (q > 0)
|
|
{
|
|
int nb_rotations = (B*(eBands[i+1]-eBands[i])+4*q)/(8*q);
|
|
exp_rotation(P+B*eBands[i], B*(eBands[i+1]-eBands[i]), -1, B, nb_rotations);
|
|
exp_rotation(X+B*eBands[i], B*(eBands[i+1]-eBands[i]), -1, B, nb_rotations);
|
|
alg_quant(X+B*eBands[i], W+B*eBands[i], B*(eBands[i+1]-eBands[i]), q, P+B*eBands[i], enc);
|
|
exp_rotation(X+B*eBands[i], B*(eBands[i+1]-eBands[i]), 1, B, nb_rotations);
|
|
}
|
|
for (j=B*eBands[i];j<B*eBands[i+1];j++)
|
|
norm[j] = MULT16_16_Q15(n,X[j]);
|
|
}
|
|
for (i=B*eBands[m->nbEBands];i<B*eBands[m->nbEBands+1];i++)
|
|
X[i] = 0;
|
|
RESTORE_STACK;
|
|
}
|
|
|
|
/* Decoding of the residual */
|
|
void unquant_bands(const CELTMode *m, celt_norm_t * restrict X, celt_norm_t *P, int total_bits, ec_dec *dec)
|
|
{
|
|
int i, j, B, bits;
|
|
const celt_int16_t *eBands = m->eBands;
|
|
VARDECL(celt_norm_t, norm);
|
|
VARDECL(int, pulses);
|
|
VARDECL(int, offsets);
|
|
SAVE_STACK;
|
|
|
|
B = m->nbMdctBlocks*m->nbChannels;
|
|
|
|
ALLOC(norm, B*eBands[m->nbEBands+1], celt_norm_t);
|
|
ALLOC(pulses, m->nbEBands, int);
|
|
ALLOC(offsets, m->nbEBands, int);
|
|
|
|
for (i=0;i<m->nbEBands;i++)
|
|
offsets[i] = 0;
|
|
/* Use a single-bit margin to guard against overrunning (make sure it's enough) */
|
|
bits = total_bits - ec_dec_tell(dec, 0) - 1;
|
|
compute_allocation(m, offsets, bits, pulses);
|
|
|
|
for (i=0;i<m->nbEBands;i++)
|
|
{
|
|
int q;
|
|
celt_word16_t n;
|
|
q = pulses[i];
|
|
n = SHL16(celt_sqrt(B*(eBands[i+1]-eBands[i])),11);
|
|
|
|
/* If pitch isn't available, use intra-frame prediction */
|
|
if (eBands[i] >= m->pitchEnd || q<=0)
|
|
{
|
|
q -= 1;
|
|
if (q<0)
|
|
intra_fold(X+B*eBands[i], B*(eBands[i+1]-eBands[i]), norm, P+B*eBands[i], B, eBands[i], eBands[m->nbEBands+1]);
|
|
else
|
|
intra_unquant(X+B*eBands[i], B*(eBands[i+1]-eBands[i]), q, norm, P+B*eBands[i], B, eBands[i], dec);
|
|
}
|
|
|
|
if (q > 0)
|
|
{
|
|
int nb_rotations = (B*(eBands[i+1]-eBands[i])+4*q)/(8*q);
|
|
exp_rotation(P+B*eBands[i], B*(eBands[i+1]-eBands[i]), -1, B, nb_rotations);
|
|
alg_unquant(X+B*eBands[i], B*(eBands[i+1]-eBands[i]), q, P+B*eBands[i], dec);
|
|
exp_rotation(X+B*eBands[i], B*(eBands[i+1]-eBands[i]), 1, B, nb_rotations);
|
|
}
|
|
for (j=B*eBands[i];j<B*eBands[i+1];j++)
|
|
norm[j] = MULT16_16_Q15(n,X[j]);
|
|
}
|
|
for (i=B*eBands[m->nbEBands];i<B*eBands[m->nbEBands+1];i++)
|
|
X[i] = 0;
|
|
RESTORE_STACK;
|
|
}
|
|
|
|
void stereo_mix(const CELTMode *m, celt_norm_t *X, const celt_ener_t *bank, int dir)
|
|
{
|
|
int i, B, C;
|
|
const celt_int16_t *eBands = m->eBands;
|
|
B = m->nbMdctBlocks;
|
|
C = m->nbChannels;
|
|
for (i=0;i<m->nbEBands;i++)
|
|
{
|
|
int j;
|
|
celt_word16_t left, right;
|
|
celt_word16_t a1, a2;
|
|
celt_word16_t norm;
|
|
#ifdef FIXED_POINT
|
|
int shift = celt_zlog2(MAX32(bank[i*C], bank[i*C+1]))-13;
|
|
#endif
|
|
left = VSHR32(bank[i*C],shift);
|
|
right = VSHR32(bank[i*C+1],shift);
|
|
norm = EPSILON + celt_sqrt(EPSILON+MULT16_16(left,left)+MULT16_16(right,right));
|
|
a1 = DIV32_16(SHL32(EXTEND32(left),14),norm);
|
|
a2 = dir*DIV32_16(SHL32(EXTEND32(right),14),norm);
|
|
for (j=B*eBands[i];j<B*eBands[i+1];j++)
|
|
{
|
|
celt_norm_t r, l;
|
|
l = X[j*C];
|
|
r = X[j*C+1];
|
|
X[j*C] = MULT16_16_Q14(a1,l) + MULT16_16_Q14(a2,r);
|
|
X[j*C+1] = MULT16_16_Q14(a1,r) - MULT16_16_Q14(a2,l);
|
|
}
|
|
}
|
|
for (i=B*C*eBands[m->nbEBands];i<B*C*eBands[m->nbEBands+1];i++)
|
|
X[i] = 0;
|
|
|
|
}
|