899 lines
25 KiB
C
899 lines
25 KiB
C
/* Copyright (c) 2007-2008 CSIRO
|
|
Copyright (c) 2007-2009 Xiph.Org Foundation
|
|
Copyright (c) 2008-2009 Gregory Maxwell
|
|
Written by Jean-Marc Valin and Gregory Maxwell */
|
|
/*
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions
|
|
are met:
|
|
|
|
- Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
|
|
- Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
|
|
- Neither the name of the Xiph.org Foundation nor the names of its
|
|
contributors may be used to endorse or promote products derived from
|
|
this software without specific prior written permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
|
|
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include "config.h"
|
|
#endif
|
|
|
|
#include <math.h>
|
|
#include "bands.h"
|
|
#include "modes.h"
|
|
#include "vq.h"
|
|
#include "cwrs.h"
|
|
#include "stack_alloc.h"
|
|
#include "os_support.h"
|
|
#include "mathops.h"
|
|
#include "rate.h"
|
|
|
|
/* This is a cos() approximation designed to be bit-exact on any platform. Bit exactness
|
|
with this approximation is important because it has an impact on the bit allocation */
|
|
static celt_int16 bitexact_cos(celt_int16 x)
|
|
{
|
|
celt_int32 tmp;
|
|
celt_int16 x2;
|
|
tmp = (4096+((celt_int32)(x)*(x)))>>13;
|
|
if (tmp > 32767)
|
|
tmp = 32767;
|
|
x2 = tmp;
|
|
x2 = (32767-x2) + FRAC_MUL16(x2, (-7651 + FRAC_MUL16(x2, (8277 + FRAC_MUL16(-626, x2)))));
|
|
if (x2 > 32766)
|
|
x2 = 32766;
|
|
return 1+x2;
|
|
}
|
|
|
|
|
|
#ifdef FIXED_POINT
|
|
/* Compute the amplitude (sqrt energy) in each of the bands */
|
|
void compute_band_energies(const CELTMode *m, const celt_sig *X, celt_ener *bank, int end, int _C, int M)
|
|
{
|
|
int i, c, N;
|
|
const celt_int16 *eBands = m->eBands;
|
|
const int C = CHANNELS(_C);
|
|
N = M*m->shortMdctSize;
|
|
for (c=0;c<C;c++)
|
|
{
|
|
for (i=0;i<end;i++)
|
|
{
|
|
int j;
|
|
celt_word32 maxval=0;
|
|
celt_word32 sum = 0;
|
|
|
|
j=M*eBands[i]; do {
|
|
maxval = MAX32(maxval, X[j+c*N]);
|
|
maxval = MAX32(maxval, -X[j+c*N]);
|
|
} while (++j<M*eBands[i+1]);
|
|
|
|
if (maxval > 0)
|
|
{
|
|
int shift = celt_ilog2(maxval)-10;
|
|
j=M*eBands[i]; do {
|
|
sum = MAC16_16(sum, EXTRACT16(VSHR32(X[j+c*N],shift)),
|
|
EXTRACT16(VSHR32(X[j+c*N],shift)));
|
|
} while (++j<M*eBands[i+1]);
|
|
/* We're adding one here to make damn sure we never end up with a pitch vector that's
|
|
larger than unity norm */
|
|
bank[i+c*m->nbEBands] = EPSILON+VSHR32(EXTEND32(celt_sqrt(sum)),-shift);
|
|
} else {
|
|
bank[i+c*m->nbEBands] = EPSILON;
|
|
}
|
|
/*printf ("%f ", bank[i+c*m->nbEBands]);*/
|
|
}
|
|
}
|
|
/*printf ("\n");*/
|
|
}
|
|
|
|
/* Normalise each band such that the energy is one. */
|
|
void normalise_bands(const CELTMode *m, const celt_sig * restrict freq, celt_norm * restrict X, const celt_ener *bank, int end, int _C, int M)
|
|
{
|
|
int i, c, N;
|
|
const celt_int16 *eBands = m->eBands;
|
|
const int C = CHANNELS(_C);
|
|
N = M*m->shortMdctSize;
|
|
for (c=0;c<C;c++)
|
|
{
|
|
i=0; do {
|
|
celt_word16 g;
|
|
int j,shift;
|
|
celt_word16 E;
|
|
shift = celt_zlog2(bank[i+c*m->nbEBands])-13;
|
|
E = VSHR32(bank[i+c*m->nbEBands], shift);
|
|
g = EXTRACT16(celt_rcp(SHL32(E,3)));
|
|
j=M*eBands[i]; do {
|
|
X[j+c*N] = MULT16_16_Q15(VSHR32(freq[j+c*N],shift-1),g);
|
|
} while (++j<M*eBands[i+1]);
|
|
} while (++i<end);
|
|
}
|
|
}
|
|
|
|
#else /* FIXED_POINT */
|
|
/* Compute the amplitude (sqrt energy) in each of the bands */
|
|
void compute_band_energies(const CELTMode *m, const celt_sig *X, celt_ener *bank, int end, int _C, int M)
|
|
{
|
|
int i, c, N;
|
|
const celt_int16 *eBands = m->eBands;
|
|
const int C = CHANNELS(_C);
|
|
N = M*m->shortMdctSize;
|
|
for (c=0;c<C;c++)
|
|
{
|
|
for (i=0;i<end;i++)
|
|
{
|
|
int j;
|
|
celt_word32 sum = 1e-10;
|
|
for (j=M*eBands[i];j<M*eBands[i+1];j++)
|
|
sum += X[j+c*N]*X[j+c*N];
|
|
bank[i+c*m->nbEBands] = sqrt(sum);
|
|
/*printf ("%f ", bank[i+c*m->nbEBands]);*/
|
|
}
|
|
}
|
|
/*printf ("\n");*/
|
|
}
|
|
|
|
/* Normalise each band such that the energy is one. */
|
|
void normalise_bands(const CELTMode *m, const celt_sig * restrict freq, celt_norm * restrict X, const celt_ener *bank, int end, int _C, int M)
|
|
{
|
|
int i, c, N;
|
|
const celt_int16 *eBands = m->eBands;
|
|
const int C = CHANNELS(_C);
|
|
N = M*m->shortMdctSize;
|
|
for (c=0;c<C;c++)
|
|
{
|
|
for (i=0;i<end;i++)
|
|
{
|
|
int j;
|
|
celt_word16 g = 1.f/(1e-10f+bank[i+c*m->nbEBands]);
|
|
for (j=M*eBands[i];j<M*eBands[i+1];j++)
|
|
X[j+c*N] = freq[j+c*N]*g;
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif /* FIXED_POINT */
|
|
|
|
void renormalise_bands(const CELTMode *m, celt_norm * restrict X, int end, int _C, int M)
|
|
{
|
|
int i, c;
|
|
const celt_int16 *eBands = m->eBands;
|
|
const int C = CHANNELS(_C);
|
|
for (c=0;c<C;c++)
|
|
{
|
|
i=0; do {
|
|
renormalise_vector(X+M*eBands[i]+c*M*m->shortMdctSize, Q15ONE, M*eBands[i+1]-M*eBands[i], 1);
|
|
} while (++i<end);
|
|
}
|
|
}
|
|
|
|
/* De-normalise the energy to produce the synthesis from the unit-energy bands */
|
|
void denormalise_bands(const CELTMode *m, const celt_norm * restrict X, celt_sig * restrict freq, const celt_ener *bank, int end, int _C, int M)
|
|
{
|
|
int i, c, N;
|
|
const celt_int16 *eBands = m->eBands;
|
|
const int C = CHANNELS(_C);
|
|
N = M*m->shortMdctSize;
|
|
celt_assert2(C<=2, "denormalise_bands() not implemented for >2 channels");
|
|
for (c=0;c<C;c++)
|
|
{
|
|
celt_sig * restrict f;
|
|
const celt_norm * restrict x;
|
|
f = freq+c*N;
|
|
x = X+c*N;
|
|
for (i=0;i<end;i++)
|
|
{
|
|
int j, band_end;
|
|
celt_word32 g = SHR32(bank[i+c*m->nbEBands],1);
|
|
j=M*eBands[i];
|
|
band_end = M*eBands[i+1];
|
|
do {
|
|
*f++ = SHL32(MULT16_32_Q15(*x, g),2);
|
|
x++;
|
|
} while (++j<band_end);
|
|
}
|
|
for (i=M*eBands[m->nbEBands];i<N;i++)
|
|
*f++ = 0;
|
|
}
|
|
}
|
|
|
|
static void stereo_band_mix(const CELTMode *m, celt_norm *X, celt_norm *Y, const celt_ener *bank, int stereo_mode, int bandID, int dir, int N)
|
|
{
|
|
int i = bandID;
|
|
int j;
|
|
celt_word16 a1, a2;
|
|
if (stereo_mode==0)
|
|
{
|
|
/* Do mid-side when not doing intensity stereo */
|
|
a1 = QCONST16(.70711f,14);
|
|
a2 = dir*QCONST16(.70711f,14);
|
|
} else {
|
|
celt_word16 left, right;
|
|
celt_word16 norm;
|
|
#ifdef FIXED_POINT
|
|
int shift = celt_zlog2(MAX32(bank[i], bank[i+m->nbEBands]))-13;
|
|
#endif
|
|
left = VSHR32(bank[i],shift);
|
|
right = VSHR32(bank[i+m->nbEBands],shift);
|
|
norm = EPSILON + celt_sqrt(EPSILON+MULT16_16(left,left)+MULT16_16(right,right));
|
|
a1 = DIV32_16(SHL32(EXTEND32(left),14),norm);
|
|
a2 = dir*DIV32_16(SHL32(EXTEND32(right),14),norm);
|
|
}
|
|
for (j=0;j<N;j++)
|
|
{
|
|
celt_norm r, l;
|
|
l = X[j];
|
|
r = Y[j];
|
|
X[j] = MULT16_16_Q14(a1,l) + MULT16_16_Q14(a2,r);
|
|
Y[j] = MULT16_16_Q14(a1,r) - MULT16_16_Q14(a2,l);
|
|
}
|
|
}
|
|
|
|
/* Decide whether we should spread the pulses in the current frame */
|
|
int folding_decision(const CELTMode *m, celt_norm *X, celt_word16 *average, int *last_decision, int end, int _C, int M)
|
|
{
|
|
int i, c, N0;
|
|
int NR=0;
|
|
celt_word32 ratio = EPSILON;
|
|
const int C = CHANNELS(_C);
|
|
const celt_int16 * restrict eBands = m->eBands;
|
|
|
|
N0 = M*m->shortMdctSize;
|
|
|
|
for (c=0;c<C;c++)
|
|
{
|
|
for (i=0;i<end;i++)
|
|
{
|
|
int j, N;
|
|
int max_i=0;
|
|
celt_word16 max_val=EPSILON;
|
|
celt_word32 floor_ener=EPSILON;
|
|
celt_norm * restrict x = X+M*eBands[i]+c*N0;
|
|
N = M*eBands[i+1]-M*eBands[i];
|
|
for (j=0;j<N;j++)
|
|
{
|
|
if (ABS16(x[j])>max_val)
|
|
{
|
|
max_val = ABS16(x[j]);
|
|
max_i = j;
|
|
}
|
|
}
|
|
#if 0
|
|
for (j=0;j<N;j++)
|
|
{
|
|
if (abs(j-max_i)>2)
|
|
floor_ener += x[j]*x[j];
|
|
}
|
|
#else
|
|
floor_ener = QCONST32(1.,28)-MULT16_16(max_val,max_val);
|
|
if (max_i < N-1)
|
|
floor_ener -= MULT16_16(x[(max_i+1)], x[(max_i+1)]);
|
|
if (max_i < N-2)
|
|
floor_ener -= MULT16_16(x[(max_i+2)], x[(max_i+2)]);
|
|
if (max_i > 0)
|
|
floor_ener -= MULT16_16(x[(max_i-1)], x[(max_i-1)]);
|
|
if (max_i > 1)
|
|
floor_ener -= MULT16_16(x[(max_i-2)], x[(max_i-2)]);
|
|
floor_ener = MAX32(floor_ener, EPSILON);
|
|
#endif
|
|
if (N>7)
|
|
{
|
|
celt_word16 r;
|
|
celt_word16 den = celt_sqrt(floor_ener);
|
|
den = MAX32(QCONST16(.02f, 15), den);
|
|
r = DIV32_16(SHL32(EXTEND32(max_val),8),den);
|
|
ratio = ADD32(ratio, EXTEND32(r));
|
|
NR++;
|
|
}
|
|
}
|
|
}
|
|
if (NR>0)
|
|
ratio = DIV32_16(ratio, NR);
|
|
ratio = ADD32(HALF32(ratio), HALF32(*average));
|
|
if (!*last_decision)
|
|
{
|
|
*last_decision = (ratio < QCONST16(1.8f,8));
|
|
} else {
|
|
*last_decision = (ratio < QCONST16(3.f,8));
|
|
}
|
|
*average = EXTRACT16(ratio);
|
|
return *last_decision;
|
|
}
|
|
|
|
#ifdef MEASURE_NORM_MSE
|
|
|
|
float MSE[30] = {0};
|
|
int nbMSEBands = 0;
|
|
int MSECount[30] = {0};
|
|
|
|
void dump_norm_mse(void)
|
|
{
|
|
int i;
|
|
for (i=0;i<nbMSEBands;i++)
|
|
{
|
|
printf ("%g ", MSE[i]/MSECount[i]);
|
|
}
|
|
printf ("\n");
|
|
}
|
|
|
|
void measure_norm_mse(const CELTMode *m, float *X, float *X0, float *bandE, float *bandE0, int M, int N, int C)
|
|
{
|
|
static int init = 0;
|
|
int i;
|
|
if (!init)
|
|
{
|
|
atexit(dump_norm_mse);
|
|
init = 1;
|
|
}
|
|
for (i=0;i<m->nbEBands;i++)
|
|
{
|
|
int j;
|
|
int c;
|
|
float g;
|
|
if (bandE0[i]<10 || (C==2 && bandE0[i+m->nbEBands]<1))
|
|
continue;
|
|
for (c=0;c<C;c++)
|
|
{
|
|
g = bandE[i+c*m->nbEBands]/(1e-15+bandE0[i+c*m->nbEBands]);
|
|
for (j=M*m->eBands[i];j<M*m->eBands[i+1];j++)
|
|
MSE[i] += (g*X[j+c*N]-X0[j+c*N])*(g*X[j+c*N]-X0[j+c*N]);
|
|
}
|
|
MSECount[i]+=C;
|
|
}
|
|
nbMSEBands = m->nbEBands;
|
|
}
|
|
|
|
#endif
|
|
|
|
static void interleave_vector(celt_norm *X, int N0, int stride)
|
|
{
|
|
int i,j;
|
|
VARDECL(celt_norm, tmp);
|
|
int N;
|
|
SAVE_STACK;
|
|
N = N0*stride;
|
|
ALLOC(tmp, N, celt_norm);
|
|
for (i=0;i<stride;i++)
|
|
for (j=0;j<N0;j++)
|
|
tmp[j*stride+i] = X[i*N0+j];
|
|
for (j=0;j<N;j++)
|
|
X[j] = tmp[j];
|
|
RESTORE_STACK;
|
|
}
|
|
|
|
static void deinterleave_vector(celt_norm *X, int N0, int stride)
|
|
{
|
|
int i,j;
|
|
VARDECL(celt_norm, tmp);
|
|
int N;
|
|
SAVE_STACK;
|
|
N = N0*stride;
|
|
ALLOC(tmp, N, celt_norm);
|
|
for (i=0;i<stride;i++)
|
|
for (j=0;j<N0;j++)
|
|
tmp[i*N0+j] = X[j*stride+i];
|
|
for (j=0;j<N;j++)
|
|
X[j] = tmp[j];
|
|
RESTORE_STACK;
|
|
}
|
|
|
|
static void haar1(celt_norm *X, int N0, int stride)
|
|
{
|
|
int i, j;
|
|
N0 >>= 1;
|
|
for (i=0;i<stride;i++)
|
|
for (j=0;j<N0;j++)
|
|
{
|
|
celt_norm tmp = X[stride*2*j+i];
|
|
X[stride*2*j+i] = MULT16_16_Q15(QCONST16(.7070678f,15), X[stride*2*j+i] + X[stride*(2*j+1)+i]);
|
|
X[stride*(2*j+1)+i] = MULT16_16_Q15(QCONST16(.7070678f,15), tmp - X[stride*(2*j+1)+i]);
|
|
}
|
|
}
|
|
|
|
static int compute_qn(int N, int b, int offset, int stereo)
|
|
{
|
|
static const celt_int16 exp2_table8[8] =
|
|
{16384, 17866, 19483, 21247, 23170, 25267, 27554, 30048};
|
|
int qn, qb;
|
|
int N2 = 2*N-1;
|
|
if (stereo && N==2)
|
|
N2--;
|
|
qb = (b+N2*offset)/N2;
|
|
if (qb > (b>>1)-(1<<BITRES))
|
|
qb = (b>>1)-(1<<BITRES);
|
|
|
|
if (qb<0)
|
|
qb = 0;
|
|
if (qb>14<<BITRES)
|
|
qb = 14<<BITRES;
|
|
|
|
if (qb<(1<<BITRES>>1)) {
|
|
qn = 1;
|
|
} else {
|
|
qn = exp2_table8[qb&0x7]>>(14-(qb>>BITRES));
|
|
qn = (qn+1)>>1<<1;
|
|
if (qn>1024)
|
|
qn = 1024;
|
|
}
|
|
return qn;
|
|
}
|
|
|
|
|
|
/* This function is responsible for encoding and decoding a band for both
|
|
the mono and stereo case. Even in the mono case, it can split the band
|
|
in two and transmit the energy difference with the two half-bands. It
|
|
can be called recursively so bands can end up being split in 8 parts. */
|
|
static void quant_band(int encode, const CELTMode *m, int i, celt_norm *X, celt_norm *Y,
|
|
int N, int b, int spread, int B, int tf_change, celt_norm *lowband, int resynth, void *ec,
|
|
celt_int32 *remaining_bits, int LM, celt_norm *lowband_out, const celt_ener *bandE, int level, celt_int32 *seed)
|
|
{
|
|
int q;
|
|
int curr_bits;
|
|
int stereo, split;
|
|
int imid=0, iside=0;
|
|
int N0=N;
|
|
int N_B=N;
|
|
int N_B0;
|
|
int B0=B;
|
|
int time_divide=0;
|
|
int recombine=0;
|
|
|
|
N_B /= B;
|
|
N_B0 = N_B;
|
|
|
|
split = stereo = Y != NULL;
|
|
|
|
/* Special case for one sample */
|
|
if (N==1)
|
|
{
|
|
int c;
|
|
celt_norm *x = X;
|
|
for (c=0;c<1+stereo;c++)
|
|
{
|
|
int sign=0;
|
|
if (b>=1<<BITRES && *remaining_bits>=1<<BITRES)
|
|
{
|
|
if (encode)
|
|
{
|
|
sign = x[0]<0;
|
|
ec_enc_bits((ec_enc*)ec, sign, 1);
|
|
} else {
|
|
sign = ec_dec_bits((ec_dec*)ec, 1);
|
|
}
|
|
*remaining_bits -= 1<<BITRES;
|
|
b-=1<<BITRES;
|
|
}
|
|
if (resynth)
|
|
x[0] = sign ? -NORM_SCALING : NORM_SCALING;
|
|
x = Y;
|
|
}
|
|
if (lowband_out)
|
|
lowband_out[0] = X[0];
|
|
return;
|
|
}
|
|
|
|
/* Band recombining to increase frequency resolution */
|
|
if (!stereo && B > 1 && level == 0 && tf_change>0)
|
|
{
|
|
while (B>1 && tf_change>0)
|
|
{
|
|
B>>=1;
|
|
N_B<<=1;
|
|
if (encode)
|
|
haar1(X, N_B, B);
|
|
if (lowband)
|
|
haar1(lowband, N_B, B);
|
|
recombine++;
|
|
tf_change--;
|
|
}
|
|
B0=B;
|
|
N_B0 = N_B;
|
|
}
|
|
|
|
/* Increasing the time resolution */
|
|
if (!stereo && level==0)
|
|
{
|
|
while ((N_B&1) == 0 && tf_change<0 && B <= (1<<LM))
|
|
{
|
|
if (encode)
|
|
haar1(X, N_B, B);
|
|
if (lowband)
|
|
haar1(lowband, N_B, B);
|
|
B <<= 1;
|
|
N_B >>= 1;
|
|
time_divide++;
|
|
tf_change++;
|
|
}
|
|
B0 = B;
|
|
N_B0 = N_B;
|
|
}
|
|
|
|
/* Reorganize the samples in time order instead of frequency order */
|
|
if (!stereo && B0>1 && level==0)
|
|
{
|
|
if (encode)
|
|
deinterleave_vector(X, N_B, B0);
|
|
if (lowband)
|
|
deinterleave_vector(lowband, N_B, B0);
|
|
}
|
|
|
|
/* If we need more than 32 bits, try splitting the band in two. */
|
|
if (!stereo && LM != -1 && b > 32<<BITRES && N>2)
|
|
{
|
|
if (LM>0 || (N&1)==0)
|
|
{
|
|
N >>= 1;
|
|
Y = X+N;
|
|
split = 1;
|
|
LM -= 1;
|
|
B = (B+1)>>1;
|
|
}
|
|
}
|
|
|
|
if (split)
|
|
{
|
|
int qn;
|
|
int itheta=0;
|
|
int mbits, sbits, delta;
|
|
int qalloc;
|
|
celt_word16 mid, side;
|
|
int offset;
|
|
|
|
/* Decide on the resolution to give to the split parameter theta */
|
|
offset = ((m->logN[i]+(LM<<BITRES))>>1) - (stereo ? QTHETA_OFFSET_STEREO : QTHETA_OFFSET);
|
|
qn = compute_qn(N, b, offset, stereo);
|
|
|
|
qalloc = 0;
|
|
if (qn!=1)
|
|
{
|
|
if (encode)
|
|
{
|
|
if (stereo)
|
|
stereo_band_mix(m, X, Y, bandE, 0, i, 1, N);
|
|
|
|
mid = renormalise_vector(X, Q15ONE, N, 1);
|
|
side = renormalise_vector(Y, Q15ONE, N, 1);
|
|
|
|
/* theta is the atan() of the ratio between the (normalized)
|
|
side and mid. With just that parameter, we can re-scale both
|
|
mid and side because we know that 1) they have unit norm and
|
|
2) they are orthogonal. */
|
|
#ifdef FIXED_POINT
|
|
/* 0.63662 = 2/pi */
|
|
itheta = MULT16_16_Q15(QCONST16(0.63662f,15),celt_atan2p(side, mid));
|
|
#else
|
|
itheta = floor(.5f+16384*0.63662f*atan2(side,mid));
|
|
#endif
|
|
|
|
itheta = (itheta*qn+8192)>>14;
|
|
}
|
|
|
|
/* Entropy coding of the angle. We use a uniform pdf for the
|
|
first stereo split but a triangular one for the rest. */
|
|
if (stereo || qn>256 || B>1)
|
|
{
|
|
if (encode)
|
|
ec_enc_uint((ec_enc*)ec, itheta, qn+1);
|
|
else
|
|
itheta = ec_dec_uint((ec_dec*)ec, qn+1);
|
|
qalloc = log2_frac(qn+1,BITRES);
|
|
} else {
|
|
int fs=1, ft;
|
|
ft = ((qn>>1)+1)*((qn>>1)+1);
|
|
if (encode)
|
|
{
|
|
int fl;
|
|
|
|
fs = itheta <= (qn>>1) ? itheta + 1 : qn + 1 - itheta;
|
|
fl = itheta <= (qn>>1) ? itheta*(itheta + 1)>>1 :
|
|
ft - ((qn + 1 - itheta)*(qn + 2 - itheta)>>1);
|
|
|
|
ec_encode((ec_enc*)ec, fl, fl+fs, ft);
|
|
} else {
|
|
int fl=0;
|
|
int fm;
|
|
fm = ec_decode((ec_dec*)ec, ft);
|
|
|
|
if (fm < ((qn>>1)*((qn>>1) + 1)>>1))
|
|
{
|
|
itheta = (isqrt32(8*(celt_uint32)fm + 1) - 1)>>1;
|
|
fs = itheta + 1;
|
|
fl = itheta*(itheta + 1)>>1;
|
|
}
|
|
else
|
|
{
|
|
itheta = (2*(qn + 1)
|
|
- isqrt32(8*(celt_uint32)(ft - fm - 1) + 1))>>1;
|
|
fs = qn + 1 - itheta;
|
|
fl = ft - ((qn + 1 - itheta)*(qn + 2 - itheta)>>1);
|
|
}
|
|
|
|
ec_dec_update((ec_dec*)ec, fl, fl+fs, ft);
|
|
}
|
|
qalloc = log2_frac(ft,BITRES) - log2_frac(fs,BITRES) + 1;
|
|
}
|
|
itheta = itheta*16384/qn;
|
|
} else {
|
|
if (stereo && encode)
|
|
stereo_band_mix(m, X, Y, bandE, 1, i, 1, N);
|
|
}
|
|
|
|
if (itheta == 0)
|
|
{
|
|
imid = 32767;
|
|
iside = 0;
|
|
delta = -10000;
|
|
} else if (itheta == 16384)
|
|
{
|
|
imid = 0;
|
|
iside = 32767;
|
|
delta = 10000;
|
|
} else {
|
|
imid = bitexact_cos(itheta);
|
|
iside = bitexact_cos(16384-itheta);
|
|
/* This is the mid vs side allocation that minimizes squared error
|
|
in that band. */
|
|
delta = (N-1)*(log2_frac(iside,BITRES+2)-log2_frac(imid,BITRES+2))>>2;
|
|
}
|
|
|
|
/* This is a special case for N=2 that only works for stereo and takes
|
|
advantage of the fact that mid and side are orthogonal to encode
|
|
the side with just one bit. */
|
|
if (N==2 && stereo)
|
|
{
|
|
int c;
|
|
int sign=1;
|
|
celt_norm *x2, *y2;
|
|
mbits = b-qalloc;
|
|
sbits = 0;
|
|
/* Only need one bit for the side */
|
|
if (itheta != 0 && itheta != 16384)
|
|
sbits = 1<<BITRES;
|
|
mbits -= sbits;
|
|
c = itheta > 8192;
|
|
*remaining_bits -= qalloc+sbits;
|
|
|
|
x2 = c ? Y : X;
|
|
y2 = c ? X : Y;
|
|
if (sbits)
|
|
{
|
|
if (encode)
|
|
{
|
|
/* Here we only need to encode a sign for the side */
|
|
sign = x2[0]*y2[1] - x2[1]*y2[0] > 0;
|
|
ec_enc_bits((ec_enc*)ec, sign, 1);
|
|
} else {
|
|
sign = ec_dec_bits((ec_dec*)ec, 1);
|
|
}
|
|
}
|
|
sign = 2*sign - 1;
|
|
quant_band(encode, m, i, x2, NULL, N, mbits, spread, B, tf_change, lowband, resynth, ec, remaining_bits, LM, lowband_out, NULL, level+1, seed);
|
|
y2[0] = -sign*x2[1];
|
|
y2[1] = sign*x2[0];
|
|
} else {
|
|
/* "Normal" split code */
|
|
celt_norm *next_lowband2=NULL;
|
|
celt_norm *next_lowband_out1=NULL;
|
|
int next_level=0;
|
|
|
|
/* Give more bits to low-energy MDCTs than they would otherwise deserve */
|
|
if (B>1 && !stereo)
|
|
delta >>= 1;
|
|
|
|
mbits = (b-qalloc-delta)/2;
|
|
if (mbits > b-qalloc)
|
|
mbits = b-qalloc;
|
|
if (mbits<0)
|
|
mbits=0;
|
|
sbits = b-qalloc-mbits;
|
|
*remaining_bits -= qalloc;
|
|
|
|
if (lowband && !stereo)
|
|
next_lowband2 = lowband+N; /* >32-bit split case */
|
|
|
|
/* Only stereo needs to pass on lowband_out. Otherwise, it's handled at the end */
|
|
if (stereo)
|
|
next_lowband_out1 = lowband_out;
|
|
else
|
|
next_level = level+1;
|
|
|
|
quant_band(encode, m, i, X, NULL, N, mbits, spread, B, tf_change, lowband, resynth, ec, remaining_bits, LM, next_lowband_out1, NULL, next_level, seed);
|
|
quant_band(encode, m, i, Y, NULL, N, sbits, spread, B, tf_change, next_lowband2, resynth, ec, remaining_bits, LM, NULL, NULL, level, seed);
|
|
}
|
|
|
|
} else {
|
|
/* This is the basic no-split case */
|
|
q = bits2pulses(m, i, LM, b);
|
|
curr_bits = pulses2bits(m, i, LM, q);
|
|
*remaining_bits -= curr_bits;
|
|
|
|
/* Ensures we can never bust the budget */
|
|
while (*remaining_bits < 0 && q > 0)
|
|
{
|
|
*remaining_bits += curr_bits;
|
|
q--;
|
|
curr_bits = pulses2bits(m, i, LM, q);
|
|
*remaining_bits -= curr_bits;
|
|
}
|
|
|
|
/* Finally do the actual quantization */
|
|
if (encode)
|
|
alg_quant(X, N, q, spread, B, lowband, resynth, (ec_enc*)ec, seed);
|
|
else
|
|
alg_unquant(X, N, q, spread, B, lowband, (ec_dec*)ec, seed);
|
|
}
|
|
|
|
/* This code is used by the decoder and by the resynthesis-enabled encoder */
|
|
if (resynth)
|
|
{
|
|
int k;
|
|
|
|
if (split)
|
|
{
|
|
int j;
|
|
celt_word16 mid, side;
|
|
#ifdef FIXED_POINT
|
|
mid = imid;
|
|
side = iside;
|
|
#else
|
|
mid = (1.f/32768)*imid;
|
|
side = (1.f/32768)*iside;
|
|
#endif
|
|
for (j=0;j<N;j++)
|
|
X[j] = MULT16_16_Q15(X[j], mid);
|
|
for (j=0;j<N;j++)
|
|
Y[j] = MULT16_16_Q15(Y[j], side);
|
|
}
|
|
|
|
/* Undo the sample reorganization going from time order to frequency order */
|
|
if (!stereo && B0>1 && level==0)
|
|
{
|
|
interleave_vector(X, N_B, B0);
|
|
if (lowband)
|
|
interleave_vector(lowband, N_B, B0);
|
|
}
|
|
|
|
/* Undo time-freq changes that we did earlier */
|
|
N_B = N_B0;
|
|
B = B0;
|
|
for (k=0;k<time_divide;k++)
|
|
{
|
|
B >>= 1;
|
|
N_B <<= 1;
|
|
haar1(X, N_B, B);
|
|
if (lowband)
|
|
haar1(lowband, N_B, B);
|
|
}
|
|
|
|
for (k=0;k<recombine;k++)
|
|
{
|
|
haar1(X, N_B, B);
|
|
if (lowband)
|
|
haar1(lowband, N_B, B);
|
|
N_B>>=1;
|
|
B <<= 1;
|
|
}
|
|
|
|
/* Scale output for later folding */
|
|
if (lowband_out && !stereo)
|
|
{
|
|
int j;
|
|
celt_word16 n;
|
|
n = celt_sqrt(SHL32(EXTEND32(N0),22));
|
|
for (j=0;j<N0;j++)
|
|
lowband_out[j] = MULT16_16_Q15(n,X[j]);
|
|
}
|
|
|
|
if (stereo)
|
|
{
|
|
stereo_band_mix(m, X, Y, bandE, 0, i, -1, N);
|
|
/* We only need to renormalize because quantization may not
|
|
have preserved orthogonality of mid and side */
|
|
renormalise_vector(X, Q15ONE, N, 1);
|
|
renormalise_vector(Y, Q15ONE, N, 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
void quant_all_bands(int encode, const CELTMode *m, int start, int end, celt_norm *_X, celt_norm *_Y, const celt_ener *bandE, int *pulses, int shortBlocks, int fold, int *tf_res, int resynth, int total_bits, void *ec, int LM)
|
|
{
|
|
int i, balance;
|
|
celt_int32 remaining_bits;
|
|
const celt_int16 * restrict eBands = m->eBands;
|
|
celt_norm * restrict norm;
|
|
VARDECL(celt_norm, _norm);
|
|
int B;
|
|
int M;
|
|
celt_int32 seed;
|
|
celt_norm *lowband;
|
|
int update_lowband = 1;
|
|
int C = _Y != NULL ? 2 : 1;
|
|
SAVE_STACK;
|
|
|
|
M = 1<<LM;
|
|
B = shortBlocks ? M : 1;
|
|
ALLOC(_norm, M*eBands[m->nbEBands], celt_norm);
|
|
norm = _norm;
|
|
|
|
if (encode)
|
|
seed = ((ec_enc*)ec)->rng;
|
|
else
|
|
seed = ((ec_dec*)ec)->rng;
|
|
balance = 0;
|
|
lowband = NULL;
|
|
for (i=start;i<end;i++)
|
|
{
|
|
int tell;
|
|
int b;
|
|
int N;
|
|
int curr_balance;
|
|
celt_norm * restrict X, * restrict Y;
|
|
int tf_change=0;
|
|
celt_norm *effective_lowband;
|
|
|
|
X = _X+M*eBands[i];
|
|
if (_Y!=NULL)
|
|
Y = _Y+M*eBands[i];
|
|
else
|
|
Y = NULL;
|
|
N = M*eBands[i+1]-M*eBands[i];
|
|
if (encode)
|
|
tell = ec_enc_tell((ec_enc*)ec, BITRES);
|
|
else
|
|
tell = ec_dec_tell((ec_dec*)ec, BITRES);
|
|
|
|
/* Compute how many bits we want to allocate to this band */
|
|
if (i != start)
|
|
balance -= tell;
|
|
remaining_bits = (total_bits<<BITRES)-tell-1;
|
|
curr_balance = (end-i);
|
|
if (curr_balance > 3)
|
|
curr_balance = 3;
|
|
curr_balance = balance / curr_balance;
|
|
b = IMIN(remaining_bits+1,pulses[i]+curr_balance);
|
|
if (b<0)
|
|
b = 0;
|
|
/* Prevents ridiculous bit depths */
|
|
if (b > C*16*N<<BITRES)
|
|
b = C*16*N<<BITRES;
|
|
|
|
if (M*eBands[i]-N >= M*eBands[start] && (update_lowband || lowband==NULL))
|
|
lowband = norm+M*eBands[i]-N;
|
|
|
|
tf_change = tf_res[i];
|
|
if (i>=m->effEBands)
|
|
{
|
|
X=norm;
|
|
if (_Y!=NULL)
|
|
Y = norm;
|
|
}
|
|
|
|
if (tf_change==0 && !shortBlocks && fold)
|
|
effective_lowband = NULL;
|
|
else
|
|
effective_lowband = lowband;
|
|
quant_band(encode, m, i, X, Y, N, b, fold, B, tf_change, effective_lowband, resynth, ec, &remaining_bits, LM, norm+M*eBands[i], bandE, 0, &seed);
|
|
|
|
balance += pulses[i] + tell;
|
|
|
|
/* Update the folding position only as long as we have 2 bit/sample depth */
|
|
update_lowband = (b>>BITRES)>2*N;
|
|
}
|
|
RESTORE_STACK;
|
|
}
|
|
|