mirror of
https://github.com/xiph/opus.git
synced 2025-05-15 07:58:29 +00:00
205 lines
5.6 KiB
C
205 lines
5.6 KiB
C
/* Copyright (c) 2018 Mozilla
|
|
Copyright (c) 2017 Jean-Marc Valin */
|
|
/*
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions
|
|
are met:
|
|
|
|
- Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
|
|
- Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
|
|
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#ifndef _NNET_H_
|
|
#define _NNET_H_
|
|
|
|
#include "vec.h"
|
|
#include "kiss99.h"
|
|
|
|
#define ACTIVATION_LINEAR 0
|
|
#define ACTIVATION_SIGMOID 1
|
|
#define ACTIVATION_TANH 2
|
|
#define ACTIVATION_RELU 3
|
|
#define ACTIVATION_SOFTMAX 4
|
|
#define ACTIVATION_SWISH 5
|
|
|
|
#define WEIGHT_BLOB_VERSION 0
|
|
#define WEIGHT_BLOCK_SIZE 64
|
|
typedef struct {
|
|
const char *name;
|
|
int type;
|
|
int size;
|
|
const void *data;
|
|
} WeightArray;
|
|
|
|
#define WEIGHT_TYPE_float 0
|
|
#define WEIGHT_TYPE_int 1
|
|
#define WEIGHT_TYPE_qweight 2
|
|
|
|
typedef struct {
|
|
char head[4];
|
|
int version;
|
|
int type;
|
|
int size;
|
|
int block_size;
|
|
char name[44];
|
|
} WeightHead;
|
|
|
|
|
|
typedef struct {
|
|
const float *bias;
|
|
const float *input_weights;
|
|
int nb_inputs;
|
|
int nb_neurons;
|
|
int activation;
|
|
} DenseLayer;
|
|
|
|
typedef struct {
|
|
const float *bias;
|
|
const float *input_weights;
|
|
const float *factor;
|
|
int nb_inputs;
|
|
int nb_neurons;
|
|
int nb_channels;
|
|
int activation;
|
|
} MDenseLayer;
|
|
|
|
typedef struct {
|
|
const float *bias;
|
|
const float *subias;
|
|
const qweight *input_weights;
|
|
const int *input_weights_idx;
|
|
const qweight *recurrent_weights;
|
|
int nb_inputs;
|
|
int nb_neurons;
|
|
int activation;
|
|
int reset_after;
|
|
} GRULayer;
|
|
|
|
typedef struct {
|
|
const float *bias;
|
|
const float *subias;
|
|
const float *diag_weights;
|
|
const qweight *recurrent_weights;
|
|
const int *idx;
|
|
int nb_neurons;
|
|
int activation;
|
|
int reset_after;
|
|
} SparseGRULayer;
|
|
|
|
typedef struct {
|
|
const float *bias;
|
|
const float *input_weights;
|
|
int nb_inputs;
|
|
int kernel_size;
|
|
int nb_neurons;
|
|
int activation;
|
|
} Conv1DLayer;
|
|
|
|
typedef struct {
|
|
const float *embedding_weights;
|
|
int nb_inputs;
|
|
int dim;
|
|
} EmbeddingLayer;
|
|
|
|
void compute_activation(float *output, const float *input, int N, int activation);
|
|
|
|
void _lpcnet_compute_dense(const DenseLayer *layer, float *output, const float *input);
|
|
|
|
void compute_mdense(const MDenseLayer *layer, float *output, const float *input);
|
|
|
|
int sample_mdense(const MDenseLayer *layer, const float *input, const float *sampling_logit_table, kiss99_ctx *rng);
|
|
|
|
void compute_gru(const GRULayer *gru, float *state, const float *input);
|
|
|
|
void compute_gru2(const GRULayer *gru, float *state, const float *input);
|
|
|
|
void compute_gruB(const GRULayer *gru, const float* gru_b_condition, float *state, const float *input);
|
|
|
|
void compute_gru3(const GRULayer *gru, float *state, const float *input);
|
|
|
|
void compute_sparse_gru(const SparseGRULayer *gru, float *state, const float *input);
|
|
|
|
void compute_conv1d(const Conv1DLayer *layer, float *output, float *mem, const float *input);
|
|
|
|
void compute_embedding(const EmbeddingLayer *layer, float *output, int input);
|
|
|
|
void accum_embedding(const EmbeddingLayer *layer, float *output, int input);
|
|
|
|
void compute_gru_a_input(float *output, const float *input, int N, const EmbeddingLayer *layer1, int val1, const EmbeddingLayer *layer2, int val2, const EmbeddingLayer *layer3, int val3);
|
|
|
|
int sample_from_pdf(const float *pdf, int N, float exp_boost, float pdf_floor);
|
|
|
|
|
|
extern const WeightArray lpcnet_arrays[];
|
|
extern const WeightArray lpcnet_plc_arrays[];
|
|
extern const WeightArray rdovae_enc_arrays[];
|
|
extern const WeightArray rdovae_dec_arrays[];
|
|
|
|
int mdense_init(MDenseLayer *layer, const WeightArray *arrays,
|
|
const char *bias,
|
|
const char *input_weights,
|
|
const char *factor,
|
|
int nb_inputs,
|
|
int nb_neurons,
|
|
int nb_channels,
|
|
int activation);
|
|
|
|
int dense_init(DenseLayer *layer, const WeightArray *arrays,
|
|
const char *bias,
|
|
const char *input_weights,
|
|
int nb_inputs,
|
|
int nb_neurons,
|
|
int activation);
|
|
|
|
int gru_init(GRULayer *layer, const WeightArray *arrays,
|
|
const char *bias,
|
|
const char *subias,
|
|
const char *input_weights,
|
|
const char *input_weights_idx,
|
|
const char *recurrent_weights,
|
|
int nb_inputs,
|
|
int nb_neurons,
|
|
int activation,
|
|
int reset_after);
|
|
|
|
int sparse_gru_init(SparseGRULayer *layer, const WeightArray *arrays,
|
|
const char *bias,
|
|
const char *subias,
|
|
const char *diag_weights,
|
|
const char *recurrent_weights,
|
|
const char *idx,
|
|
int nb_neurons,
|
|
int activation,
|
|
int reset_after);
|
|
|
|
int conv1d_init(Conv1DLayer *layer, const WeightArray *arrays,
|
|
const char *bias,
|
|
const char *input_weights,
|
|
int nb_inputs,
|
|
int kernel_size,
|
|
int nb_neurons,
|
|
int activation);
|
|
|
|
int embedding_init(EmbeddingLayer *layer, const WeightArray *arrays,
|
|
const char *embedding_weights,
|
|
int nb_inputs,
|
|
int dim);
|
|
|
|
|
|
#endif /* _MLP_H_ */
|