mirror of
https://github.com/xiph/opus.git
synced 2025-05-19 01:48:30 +00:00
463 lines
11 KiB
C
463 lines
11 KiB
C
/* (C) 2007 Jean-Marc Valin, CSIRO
|
|
*/
|
|
/*
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions
|
|
are met:
|
|
|
|
- Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
|
|
- Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
|
|
- Neither the name of the Xiph.org Foundation nor the names of its
|
|
contributors may be used to endorse or promote products derived from
|
|
this software without specific prior written permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
|
|
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <math.h>
|
|
#include <stdlib.h>
|
|
#include "cwrs.h"
|
|
#include "vq.h"
|
|
|
|
/* Enable this or define your own implementation if you want to speed up the
|
|
VQ search (used in inner loop only) */
|
|
#if 0
|
|
#include <xmmintrin.h>
|
|
static inline float approx_sqrt(float x)
|
|
{
|
|
_mm_store_ss(&x, _mm_sqrt_ss(_mm_set_ss(x)));
|
|
return x;
|
|
}
|
|
static inline float approx_inv(float x)
|
|
{
|
|
_mm_store_ss(&x, _mm_rcp_ss(_mm_set_ss(x)));
|
|
return x;
|
|
}
|
|
#else
|
|
#define approx_sqrt(x) (sqrt(x))
|
|
#define approx_inv(x) (1.f/(x))
|
|
#endif
|
|
|
|
struct NBest {
|
|
float score;
|
|
float gain;
|
|
int sign;
|
|
int pos;
|
|
int orig;
|
|
float xy;
|
|
float yy;
|
|
float yp;
|
|
};
|
|
|
|
/* Improved algebraic pulse-base quantiser. The signal x is replaced by the sum of the pitch
|
|
a combination of pulses such that its norm is still equal to 1. The only difference with
|
|
the quantiser above is that the search is more complete. */
|
|
void alg_quant(float *x, float *W, int N, int K, float *p, float alpha, ec_enc *enc)
|
|
{
|
|
int L = 3;
|
|
float _y[L][N];
|
|
int _iy[L][N];
|
|
float _ny[L][N];
|
|
int _iny[L][N];
|
|
float *(ny[L]), *(y[L]);
|
|
int *(iny[L]), *(iy[L]);
|
|
int i, j, k, m;
|
|
int pulsesLeft;
|
|
float xy[L];
|
|
float yy[L];
|
|
float yp[L];
|
|
struct NBest _nbest[L];
|
|
struct NBest *(nbest[L]);
|
|
float Rpp=0, Rxp=0;
|
|
int maxL = 1;
|
|
|
|
for (m=0;m<L;m++)
|
|
nbest[m] = &_nbest[m];
|
|
|
|
for (m=0;m<L;m++)
|
|
{
|
|
ny[m] = _ny[m];
|
|
iny[m] = _iny[m];
|
|
y[m] = _y[m];
|
|
iy[m] = _iy[m];
|
|
}
|
|
|
|
for (j=0;j<N;j++)
|
|
{
|
|
Rpp += p[j]*p[j];
|
|
Rxp += x[j]*p[j];
|
|
}
|
|
|
|
/* We only need to initialise the zero because the first iteration only uses that */
|
|
for (i=0;i<N;i++)
|
|
y[0][i] = 0;
|
|
for (i=0;i<N;i++)
|
|
iy[0][i] = 0;
|
|
xy[0] = yy[0] = yp[0] = 0;
|
|
|
|
pulsesLeft = K;
|
|
while (pulsesLeft > 0)
|
|
{
|
|
int pulsesAtOnce=1;
|
|
int Lupdate = L;
|
|
int L2 = L;
|
|
|
|
/* Decide on complexity strategy */
|
|
pulsesAtOnce = pulsesLeft/N;
|
|
if (pulsesAtOnce<1)
|
|
pulsesAtOnce = 1;
|
|
if (pulsesLeft-pulsesAtOnce > 3 || N > 30)
|
|
Lupdate = 1;
|
|
/*printf ("%d %d %d/%d %d\n", Lupdate, pulsesAtOnce, pulsesLeft, K, N);*/
|
|
L2 = Lupdate;
|
|
if (L2>maxL)
|
|
{
|
|
L2 = maxL;
|
|
maxL *= N;
|
|
}
|
|
|
|
for (m=0;m<Lupdate;m++)
|
|
nbest[m]->score = -1e10f;
|
|
|
|
for (m=0;m<L2;m++)
|
|
{
|
|
for (j=0;j<N;j++)
|
|
{
|
|
int sign;
|
|
/*if (x[j]>0) sign=1; else sign=-1;*/
|
|
for (sign=-1;sign<=1;sign+=2)
|
|
{
|
|
/* All pulses at one location must have the same sign. */
|
|
if (iy[m][j]*sign < 0)
|
|
continue;
|
|
/*fprintf (stderr, "%d/%d %d/%d %d/%d\n", i, K, m, L2, j, N);*/
|
|
float tmp_xy, tmp_yy, tmp_yp;
|
|
float score;
|
|
float g;
|
|
float s = sign*pulsesAtOnce;
|
|
|
|
/* Updating the sums of the new pulse(s) */
|
|
tmp_xy = xy[m] + s*x[j] - alpha*s*p[j]*Rxp;
|
|
tmp_yy = yy[m] + 2.f*s*y[m][j] + s*s +s*s*alpha*alpha*p[j]*p[j]*Rpp - 2.f*alpha*s*p[j]*yp[m] - 2.f*s*s*alpha*p[j]*p[j];
|
|
tmp_yp = yp[m] + s*p[j] *(1.f-alpha*Rpp);
|
|
|
|
/* Compute the gain such that ||p + g*y|| = 1 */
|
|
g = (approx_sqrt(tmp_yp*tmp_yp + tmp_yy - tmp_yy*Rpp) - tmp_yp)*approx_inv(tmp_yy);
|
|
/* Knowing that gain, what the error: (x-g*y)^2
|
|
(result is negated and we discard x^2 because it's constant) */
|
|
score = 2.f*g*tmp_xy - g*g*tmp_yy;
|
|
|
|
if (score>nbest[Lupdate-1]->score)
|
|
{
|
|
int k;
|
|
int id = Lupdate-1;
|
|
struct NBest *tmp_best;
|
|
|
|
/* Save some pointers that would be deleted and use them for the current entry*/
|
|
tmp_best = nbest[Lupdate-1];
|
|
while (id > 0 && score > nbest[id-1]->score)
|
|
id--;
|
|
|
|
for (k=Lupdate-1;k>id;k--)
|
|
nbest[k] = nbest[k-1];
|
|
|
|
nbest[id] = tmp_best;
|
|
nbest[id]->score = score;
|
|
nbest[id]->pos = j;
|
|
nbest[id]->orig = m;
|
|
nbest[id]->sign = sign;
|
|
nbest[id]->gain = g;
|
|
nbest[id]->xy = tmp_xy;
|
|
nbest[id]->yy = tmp_yy;
|
|
nbest[id]->yp = tmp_yp;
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
/* Only now that we've made the final choice, update ny/iny and others */
|
|
for (k=0;k<Lupdate;k++)
|
|
{
|
|
int n;
|
|
int is;
|
|
float s;
|
|
is = nbest[k]->sign*pulsesAtOnce;
|
|
s = is;
|
|
for (n=0;n<N;n++)
|
|
ny[k][n] = y[nbest[k]->orig][n] - alpha*s*p[nbest[k]->pos]*p[n];
|
|
ny[k][nbest[k]->pos] += s;
|
|
|
|
for (n=0;n<N;n++)
|
|
iny[k][n] = iy[nbest[k]->orig][n];
|
|
iny[k][nbest[k]->pos] += is;
|
|
|
|
xy[k] = nbest[k]->xy;
|
|
yy[k] = nbest[k]->yy;
|
|
yp[k] = nbest[k]->yp;
|
|
}
|
|
/* Swap ny/iny with y/iy */
|
|
for (k=0;k<Lupdate;k++)
|
|
{
|
|
float *tmp_ny;
|
|
int *tmp_iny;
|
|
|
|
tmp_ny = ny[k];
|
|
ny[k] = y[k];
|
|
y[k] = tmp_ny;
|
|
tmp_iny = iny[k];
|
|
iny[k] = iy[k];
|
|
iy[k] = tmp_iny;
|
|
}
|
|
pulsesLeft -= pulsesAtOnce;
|
|
}
|
|
|
|
if (0) {
|
|
float err=0;
|
|
for (i=0;i<N;i++)
|
|
err += (x[i]-nbest[0]->gain*y[0][i])*(x[i]-nbest[0]->gain*y[0][i]);
|
|
/*if (N<=10)
|
|
printf ("%f %d %d\n", err, K, N);*/
|
|
}
|
|
for (i=0;i<N;i++)
|
|
x[i] = p[i]+nbest[0]->gain*y[0][i];
|
|
/* Sanity checks, don't bother */
|
|
if (0) {
|
|
float E=1e-15;
|
|
int ABS = 0;
|
|
for (i=0;i<N;i++)
|
|
ABS += abs(iy[0][i]);
|
|
/*if (K != ABS)
|
|
printf ("%d %d\n", K, ABS);*/
|
|
for (i=0;i<N;i++)
|
|
E += x[i]*x[i];
|
|
/*printf ("%f\n", E);*/
|
|
E = 1/sqrt(E);
|
|
for (i=0;i<N;i++)
|
|
x[i] *= E;
|
|
}
|
|
|
|
encode_pulses(iy[0], N, K, enc);
|
|
|
|
/* Recompute the gain in one pass to reduce the encoder-decoder mismatch
|
|
due to the recursive computation used in quantisation.
|
|
Not quite sure whether we need that or not */
|
|
if (1) {
|
|
float Ryp=0;
|
|
float Ryy=0;
|
|
float g=0;
|
|
|
|
for (i=0;i<N;i++)
|
|
Ryp += iy[0][i]*p[i];
|
|
|
|
for (i=0;i<N;i++)
|
|
y[0][i] = iy[0][i] - alpha*Ryp*p[i];
|
|
|
|
Ryp = 0;
|
|
for (i=0;i<N;i++)
|
|
Ryp += y[0][i]*p[i];
|
|
|
|
for (i=0;i<N;i++)
|
|
Ryy += y[0][i]*y[0][i];
|
|
|
|
g = (sqrt(Ryp*Ryp + Ryy - Ryy*Rpp) - Ryp)/Ryy;
|
|
|
|
for (i=0;i<N;i++)
|
|
x[i] = p[i] + g*y[0][i];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
void alg_unquant(float *x, int N, int K, float *p, float alpha, ec_dec *dec)
|
|
{
|
|
int i;
|
|
int iy[N];
|
|
float y[N];
|
|
float Rpp=0, Ryp=0, Ryy=0;
|
|
float g;
|
|
|
|
decode_pulses(iy, N, K, dec);
|
|
|
|
/*for (i=0;i<N;i++)
|
|
printf ("%d ", iy[i]);*/
|
|
for (i=0;i<N;i++)
|
|
Rpp += p[i]*p[i];
|
|
|
|
for (i=0;i<N;i++)
|
|
Ryp += iy[i]*p[i];
|
|
|
|
for (i=0;i<N;i++)
|
|
y[i] = iy[i] - alpha*Ryp*p[i];
|
|
|
|
/* Recompute after the projection (I think it's right) */
|
|
Ryp = 0;
|
|
for (i=0;i<N;i++)
|
|
Ryp += y[i]*p[i];
|
|
|
|
for (i=0;i<N;i++)
|
|
Ryy += y[i]*y[i];
|
|
|
|
g = (sqrt(Ryp*Ryp + Ryy - Ryy*Rpp) - Ryp)/Ryy;
|
|
|
|
for (i=0;i<N;i++)
|
|
x[i] = p[i] + g*y[i];
|
|
}
|
|
|
|
|
|
static const float pg[11] = {1.f, .75f, .65f, 0.6f, 0.6f, .6f, .55f, .55f, .5f, .5f, .5f};
|
|
|
|
void intra_prediction(float *x, float *W, int N, int K, float *Y, float *P, int B, int N0, ec_enc *enc)
|
|
{
|
|
int i,j;
|
|
int best=0;
|
|
float best_score=0;
|
|
float s = 1;
|
|
int sign;
|
|
float E;
|
|
int max_pos = N0-N/B;
|
|
if (max_pos > 32)
|
|
max_pos = 32;
|
|
|
|
for (i=0;i<max_pos*B;i+=B)
|
|
{
|
|
int j;
|
|
float xy=0, yy=0;
|
|
float score;
|
|
for (j=0;j<N;j++)
|
|
{
|
|
xy += x[j]*Y[i+j];
|
|
yy += Y[i+j]*Y[i+j];
|
|
}
|
|
score = xy*xy/(.001+yy);
|
|
if (score > best_score)
|
|
{
|
|
best_score = score;
|
|
best = i;
|
|
if (xy>0)
|
|
s = 1;
|
|
else
|
|
s = -1;
|
|
}
|
|
}
|
|
if (s<0)
|
|
sign = 1;
|
|
else
|
|
sign = 0;
|
|
/*printf ("%d %d ", sign, best);*/
|
|
ec_enc_uint(enc,sign,2);
|
|
ec_enc_uint(enc,best/B,max_pos);
|
|
/*printf ("%d %f\n", best, best_score);*/
|
|
|
|
float pred_gain;
|
|
if (K>10)
|
|
pred_gain = pg[10];
|
|
else
|
|
pred_gain = pg[K];
|
|
E = 1e-10;
|
|
for (j=0;j<N;j++)
|
|
{
|
|
P[j] = s*Y[best+j];
|
|
E += P[j]*P[j];
|
|
}
|
|
E = pred_gain/sqrt(E);
|
|
for (j=0;j<N;j++)
|
|
P[j] *= E;
|
|
if (K>0)
|
|
{
|
|
for (j=0;j<N;j++)
|
|
x[j] -= P[j];
|
|
} else {
|
|
for (j=0;j<N;j++)
|
|
x[j] = P[j];
|
|
}
|
|
/*printf ("quant ");*/
|
|
/*for (j=0;j<N;j++) printf ("%f ", P[j]);*/
|
|
|
|
}
|
|
|
|
void intra_unquant(float *x, int N, int K, float *Y, float *P, int B, int N0, ec_dec *dec)
|
|
{
|
|
int j;
|
|
int sign;
|
|
float s;
|
|
int best;
|
|
float E;
|
|
int max_pos = N0-N/B;
|
|
if (max_pos > 32)
|
|
max_pos = 32;
|
|
|
|
sign = ec_dec_uint(dec, 2);
|
|
if (sign == 0)
|
|
s = 1;
|
|
else
|
|
s = -1;
|
|
|
|
best = B*ec_dec_uint(dec, max_pos);
|
|
/*printf ("%d %d ", sign, best);*/
|
|
|
|
float pred_gain;
|
|
if (K>10)
|
|
pred_gain = pg[10];
|
|
else
|
|
pred_gain = pg[K];
|
|
E = 1e-10;
|
|
for (j=0;j<N;j++)
|
|
{
|
|
P[j] = s*Y[best+j];
|
|
E += P[j]*P[j];
|
|
}
|
|
E = pred_gain/sqrt(E);
|
|
for (j=0;j<N;j++)
|
|
P[j] *= E;
|
|
if (K==0)
|
|
{
|
|
for (j=0;j<N;j++)
|
|
x[j] = P[j];
|
|
}
|
|
}
|
|
|
|
void intra_fold(float *x, int N, float *Y, float *P, int B, int N0, int Nmax)
|
|
{
|
|
int i, j;
|
|
float E;
|
|
|
|
E = 1e-10;
|
|
if (N0 >= Nmax/2)
|
|
{
|
|
for (i=0;i<B;i++)
|
|
{
|
|
for (j=0;j<N/B;j++)
|
|
{
|
|
P[j*B+i] = Y[(Nmax-N0-j-1)*B+i];
|
|
E += P[j*B+i]*P[j*B+i];
|
|
}
|
|
}
|
|
} else {
|
|
for (j=0;j<N;j++)
|
|
{
|
|
P[j] = Y[j];
|
|
E += P[j]*P[j];
|
|
}
|
|
}
|
|
E = 1.f/sqrt(E);
|
|
for (j=0;j<N;j++)
|
|
P[j] *= E;
|
|
for (j=0;j<N;j++)
|
|
x[j] = P[j];
|
|
}
|
|
|