opus/dnn/torch/lpcnet/scripts/collect_multi_run_results.py
Jan Buethe 7b8ba143f1
added copyright headers
Signed-off-by: Jan Buethe <jbuethe@amazon.de>
2023-09-05 22:31:19 +02:00

190 lines
No EOL
5.5 KiB
Python

"""
/* Copyright (c) 2023 Amazon
Written by Jan Buethe */
/*
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
"""
import argparse
import os
from uuid import UUID
from collections import OrderedDict
import pickle
import torch
import numpy as np
import utils
parser = argparse.ArgumentParser()
parser.add_argument("input", type=str, help="input folder containing multi-run output")
parser.add_argument("tag", type=str, help="tag for multi-run experiment")
parser.add_argument("csv", type=str, help="name for output csv")
def is_uuid(val):
try:
UUID(val)
return True
except:
return False
def collect_results(folder):
training_folder = os.path.join(folder, 'training')
testing_folder = os.path.join(folder, 'testing')
# validation loss
checkpoint = torch.load(os.path.join(training_folder, 'checkpoints', 'checkpoint_finalize_epoch_1.pth'), map_location='cpu')
validation_loss = checkpoint['validation_loss']
# eval_warpq
eval_warpq = utils.data.parse_warpq_scores(os.path.join(training_folder, 'out_finalize.txt'))[-1]
# testing results
testing_results = utils.data.collect_test_stats(os.path.join(testing_folder, 'final'))
results = OrderedDict()
results['eval_loss'] = validation_loss
results['eval_warpq'] = eval_warpq
results['pesq_mean'] = testing_results['pesq'][0]
results['warpq_mean'] = testing_results['warpq'][0]
results['pitch_error_mean'] = testing_results['pitch_error'][0]
results['voicing_error_mean'] = testing_results['voicing_error'][0]
return results
def print_csv(path, results, tag, ranks=None, header=True):
metrics = next(iter(results.values())).keys()
if ranks is not None:
rank_keys = next(iter(ranks.values())).keys()
else:
rank_keys = []
with open(path, 'w') as f:
if header:
f.write("uuid, tag")
for metric in metrics:
f.write(f", {metric}")
for rank in rank_keys:
f.write(f", {rank}")
f.write("\n")
for uuid, values in results.items():
f.write(f"{uuid}, {tag}")
for val in values.values():
f.write(f", {val:10.8f}")
for rank in rank_keys:
f.write(f", {ranks[uuid][rank]:4d}")
f.write("\n")
def get_ranks(results):
metrics = list(next(iter(results.values())).keys())
positive = {'pesq_mean', 'mix'}
ranks = OrderedDict()
for key in results.keys():
ranks[key] = OrderedDict()
for metric in metrics:
sign = -1 if metric in positive else 1
x = sorted([(key, value[metric]) for key, value in results.items()], key=lambda x: sign * x[1])
x = [y[0] for y in x]
for key in results.keys():
ranks[key]['rank_' + metric] = x.index(key) + 1
return ranks
def analyse_metrics(results):
metrics = ['eval_loss', 'pesq_mean', 'warpq_mean', 'pitch_error_mean', 'voicing_error_mean']
x = []
for metric in metrics:
x.append([val[metric] for val in results.values()])
x = np.array(x)
print(x)
def add_mix_metric(results):
metrics = ['eval_loss', 'pesq_mean', 'warpq_mean', 'pitch_error_mean', 'voicing_error_mean']
x = []
for metric in metrics:
x.append([val[metric] for val in results.values()])
x = np.array(x).transpose() * np.array([-1, 1, -1, -1, -1])
z = (x - np.mean(x, axis=0)) / np.std(x, axis=0)
print(f"covariance matrix for normalized scores of {metrics}:")
print(np.cov(z.transpose()))
score = np.mean(z, axis=1)
for i, key in enumerate(results.keys()):
results[key]['mix'] = score[i].item()
if __name__ == "__main__":
args = parser.parse_args()
uuids = sorted([x for x in os.listdir(args.input) if os.path.isdir(os.path.join(args.input, x)) and is_uuid(x)])
results = OrderedDict()
for uuid in uuids:
results[uuid] = collect_results(os.path.join(args.input, uuid))
add_mix_metric(results)
ranks = get_ranks(results)
csv = args.csv if args.csv.endswith('.csv') else args.csv + '.csv'
print_csv(args.csv, results, args.tag, ranks=ranks)
with open(csv[:-4] + '.pickle', 'wb') as f:
pickle.dump(results, f, protocol=pickle.HIGHEST_PROTOCOL)