opus/dnn/torch/lpcnet/models/multi_rate_lpcnet.py
Jan Buethe 7b8ba143f1
added copyright headers
Signed-off-by: Jan Buethe <jbuethe@amazon.de>
2023-09-05 22:31:19 +02:00

437 lines
19 KiB
Python

"""
/* Copyright (c) 2023 Amazon
Written by Jan Buethe */
/*
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
"""
import torch
from torch import nn
from utils.layers.subconditioner import get_subconditioner
from utils.layers import DualFC
from utils.ulaw import lin2ulawq, ulaw2lin
from utils.sample import sample_excitation
from utils.pcm import clip_to_int16
from utils.sparsification import GRUSparsifier, calculate_gru_flops_per_step
from utils.misc import interleave_tensors
# MultiRateLPCNet
class MultiRateLPCNet(nn.Module):
def __init__(self, config):
super(MultiRateLPCNet, self).__init__()
# general parameters
self.input_layout = config['input_layout']
self.feature_history = config['feature_history']
self.feature_lookahead = config['feature_lookahead']
self.signals = config['signals']
# frame rate network parameters
self.feature_dimension = config['feature_dimension']
self.period_embedding_dim = config['period_embedding_dim']
self.period_levels = config['period_levels']
self.feature_channels = self.feature_dimension + self.period_embedding_dim
self.feature_conditioning_dim = config['feature_conditioning_dim']
self.feature_conv_kernel_size = config['feature_conv_kernel_size']
# frame rate network layers
self.period_embedding = nn.Embedding(self.period_levels, self.period_embedding_dim)
self.feature_conv1 = nn.Conv1d(self.feature_channels, self.feature_conditioning_dim, self.feature_conv_kernel_size, padding='valid')
self.feature_conv2 = nn.Conv1d(self.feature_conditioning_dim, self.feature_conditioning_dim, self.feature_conv_kernel_size, padding='valid')
self.feature_dense1 = nn.Linear(self.feature_conditioning_dim, self.feature_conditioning_dim)
self.feature_dense2 = nn.Linear(*(2*[self.feature_conditioning_dim]))
# sample rate network parameters
self.frame_size = config['frame_size']
self.signal_levels = config['signal_levels']
self.signal_embedding_dim = config['signal_embedding_dim']
self.gru_a_units = config['gru_a_units']
self.gru_b_units = config['gru_b_units']
self.output_levels = config['output_levels']
# subconditioning B
sub_config = config['subconditioning']['subconditioning_b']
self.substeps_b = sub_config['number_of_subsamples']
self.subcondition_signals_b = sub_config['signals']
self.signals_idx_b = [self.input_layout['signals'][key] for key in sub_config['signals']]
method = sub_config['method']
kwargs = sub_config['kwargs']
if type(kwargs) == type(None):
kwargs = dict()
state_size = self.gru_b_units
self.subconditioner_b = get_subconditioner(method,
sub_config['number_of_subsamples'], sub_config['pcm_embedding_size'],
state_size, self.signal_levels, len(sub_config['signals']),
**sub_config['kwargs'])
# subconditioning A
sub_config = config['subconditioning']['subconditioning_a']
self.substeps_a = sub_config['number_of_subsamples']
self.subcondition_signals_a = sub_config['signals']
self.signals_idx_a = [self.input_layout['signals'][key] for key in sub_config['signals']]
method = sub_config['method']
kwargs = sub_config['kwargs']
if type(kwargs) == type(None):
kwargs = dict()
state_size = self.gru_a_units
self.subconditioner_a = get_subconditioner(method,
sub_config['number_of_subsamples'], sub_config['pcm_embedding_size'],
state_size, self.signal_levels, self.substeps_b * len(sub_config['signals']),
**sub_config['kwargs'])
# wrap up subconditioning, group_size_gru_a holds the number
# of timesteps that are grouped as sample input for GRU A
# input and group_size_subcondition_a holds the number of samples that are
# grouped as input to pre-GRU B subconditioning
self.group_size_gru_a = self.substeps_a * self.substeps_b
self.group_size_subcondition_a = self.substeps_b
self.gru_a_rate_divider = self.group_size_gru_a
self.gru_b_rate_divider = self.substeps_b
# gru sizes
self.gru_a_input_dim = self.group_size_gru_a * len(self.signals) * self.signal_embedding_dim + self.feature_conditioning_dim
self.gru_b_input_dim = self.subconditioner_a.get_output_dim(0) + self.feature_conditioning_dim
self.signals_idx = [self.input_layout['signals'][key] for key in self.signals]
# sample rate network layers
self.signal_embedding = nn.Embedding(self.signal_levels, self.signal_embedding_dim)
self.gru_a = nn.GRU(self.gru_a_input_dim, self.gru_a_units, batch_first=True)
self.gru_b = nn.GRU(self.gru_b_input_dim, self.gru_b_units, batch_first=True)
# sparsification
self.sparsifier = []
# GRU A
if 'gru_a' in config['sparsification']:
gru_config = config['sparsification']['gru_a']
task_list = [(self.gru_a, gru_config['params'])]
self.sparsifier.append(GRUSparsifier(task_list,
gru_config['start'],
gru_config['stop'],
gru_config['interval'],
gru_config['exponent'])
)
self.gru_a_flops_per_step = calculate_gru_flops_per_step(self.gru_a,
gru_config['params'], drop_input=True)
else:
self.gru_a_flops_per_step = calculate_gru_flops_per_step(self.gru_a, drop_input=True)
# GRU B
if 'gru_b' in config['sparsification']:
gru_config = config['sparsification']['gru_b']
task_list = [(self.gru_b, gru_config['params'])]
self.sparsifier.append(GRUSparsifier(task_list,
gru_config['start'],
gru_config['stop'],
gru_config['interval'],
gru_config['exponent'])
)
self.gru_b_flops_per_step = calculate_gru_flops_per_step(self.gru_b,
gru_config['params'])
else:
self.gru_b_flops_per_step = calculate_gru_flops_per_step(self.gru_b)
# dual FCs
self.dual_fc = []
for i in range(self.substeps_b):
dim = self.subconditioner_b.get_output_dim(i)
self.dual_fc.append(DualFC(dim, self.output_levels))
self.add_module(f"dual_fc_{i}", self.dual_fc[-1])
def get_gflops(self, fs, verbose=False, hierarchical_sampling=False):
gflops = 0
# frame rate network
conditioning_dim = self.feature_conditioning_dim
feature_channels = self.feature_channels
frame_rate = fs / self.frame_size
frame_rate_network_complexity = 1e-9 * 2 * (5 * conditioning_dim + 3 * feature_channels) * conditioning_dim * frame_rate
if verbose:
print(f"frame rate network: {frame_rate_network_complexity} GFLOPS")
gflops += frame_rate_network_complexity
# gru a
gru_a_rate = fs / self.group_size_gru_a
gru_a_complexity = 1e-9 * gru_a_rate * self.gru_a_flops_per_step
if verbose:
print(f"gru A: {gru_a_complexity} GFLOPS")
gflops += gru_a_complexity
# subconditioning a
subcond_a_rate = fs / self.substeps_b
subconditioning_a_complexity = 1e-9 * self.subconditioner_a.get_average_flops_per_step() * subcond_a_rate
if verbose:
print(f"subconditioning A: {subconditioning_a_complexity} GFLOPS")
gflops += subconditioning_a_complexity
# gru b
gru_b_rate = fs / self.substeps_b
gru_b_complexity = 1e-9 * gru_b_rate * self.gru_b_flops_per_step
if verbose:
print(f"gru B: {gru_b_complexity} GFLOPS")
gflops += gru_b_complexity
# subconditioning b
subcond_b_rate = fs
subconditioning_b_complexity = 1e-9 * self.subconditioner_b.get_average_flops_per_step() * subcond_b_rate
if verbose:
print(f"subconditioning B: {subconditioning_b_complexity} GFLOPS")
gflops += subconditioning_b_complexity
# dual fcs
for i, fc in enumerate(self.dual_fc):
rate = fs / len(self.dual_fc)
input_size = fc.dense1.in_features
output_size = fc.dense1.out_features
dual_fc_complexity = 1e-9 * (4 * input_size * output_size + 22 * output_size) * rate
if hierarchical_sampling:
dual_fc_complexity /= 8
if verbose:
print(f"dual_fc_{i}: {dual_fc_complexity} GFLOPS")
gflops += dual_fc_complexity
if verbose:
print(f'total: {gflops} GFLOPS')
return gflops
def sparsify(self):
for sparsifier in self.sparsifier:
sparsifier.step()
def frame_rate_network(self, features, periods):
embedded_periods = torch.flatten(self.period_embedding(periods), 2, 3)
features = torch.concat((features, embedded_periods), dim=-1)
# convert to channels first and calculate conditioning vector
c = torch.permute(features, [0, 2, 1])
c = torch.tanh(self.feature_conv1(c))
c = torch.tanh(self.feature_conv2(c))
# back to channels last
c = torch.permute(c, [0, 2, 1])
c = torch.tanh(self.feature_dense1(c))
c = torch.tanh(self.feature_dense2(c))
return c
def prepare_signals(self, signals, group_size, signal_idx):
""" extracts, delays and groups signals """
batch_size, sequence_length, num_signals = signals.shape
# extract signals according to position
signals = torch.cat([signals[:, :, i : i + 1] for i in signal_idx],
dim=-1)
# roll back pcm to account for grouping
signals = torch.roll(signals, group_size - 1, -2)
# reshape
signals = torch.reshape(signals,
(batch_size, sequence_length // group_size, group_size * len(signal_idx)))
return signals
def sample_rate_network(self, signals, c, gru_states):
signals_a = self.prepare_signals(signals, self.group_size_gru_a, self.signals_idx)
embedded_signals = torch.flatten(self.signal_embedding(signals_a), 2, 3)
# features at GRU A rate
c_upsampled_a = torch.repeat_interleave(c, self.frame_size // self.gru_a_rate_divider, dim=1)
# features at GRU B rate
c_upsampled_b = torch.repeat_interleave(c, self.frame_size // self.gru_b_rate_divider, dim=1)
y = torch.concat((embedded_signals, c_upsampled_a), dim=-1)
y, gru_a_state = self.gru_a(y, gru_states[0])
# first round of upsampling and subconditioning
c_signals_a = self.prepare_signals(signals, self.group_size_subcondition_a, self.signals_idx_a)
y = self.subconditioner_a(y, c_signals_a)
y = interleave_tensors(y)
y = torch.concat((y, c_upsampled_b), dim=-1)
y, gru_b_state = self.gru_b(y, gru_states[1])
c_signals_b = self.prepare_signals(signals, 1, self.signals_idx_b)
y = self.subconditioner_b(y, c_signals_b)
y = [self.dual_fc[i](y[i]) for i in range(self.substeps_b)]
y = interleave_tensors(y)
return y, (gru_a_state, gru_b_state)
def decoder(self, signals, c, gru_states):
embedded_signals = torch.flatten(self.signal_embedding(signals), 2, 3)
y = torch.concat((embedded_signals, c), dim=-1)
y, gru_a_state = self.gru_a(y, gru_states[0])
y = torch.concat((y, c), dim=-1)
y, gru_b_state = self.gru_b(y, gru_states[1])
y = self.dual_fc(y)
return torch.softmax(y, dim=-1), (gru_a_state, gru_b_state)
def forward(self, features, periods, signals, gru_states):
c = self.frame_rate_network(features, periods)
y, _ = self.sample_rate_network(signals, c, gru_states)
log_probs = torch.log_softmax(y, dim=-1)
return log_probs
def generate(self, features, periods, lpcs):
with torch.no_grad():
device = self.parameters().__next__().device
num_frames = features.shape[0] - self.feature_history - self.feature_lookahead
lpc_order = lpcs.shape[-1]
num_input_signals = len(self.signals)
pitch_corr_position = self.input_layout['features']['pitch_corr'][0]
# signal buffers
last_signal = torch.zeros((num_frames * self.frame_size + lpc_order + 1))
prediction = torch.zeros((num_frames * self.frame_size + lpc_order + 1))
last_error = torch.zeros((num_frames * self.frame_size + lpc_order + 1))
output = torch.zeros((num_frames * self.frame_size), dtype=torch.int16)
mem = 0
# state buffers
gru_a_state = torch.zeros((1, 1, self.gru_a_units))
gru_b_state = torch.zeros((1, 1, self.gru_b_units))
input_signals = 128 + torch.zeros(self.group_size_gru_a * num_input_signals, dtype=torch.long)
# conditioning signals for subconditioner a
c_signals_a = 128 + torch.zeros(self.group_size_subcondition_a * len(self.signals_idx_a), dtype=torch.long)
# conditioning signals for subconditioner b
c_signals_b = 128 + torch.zeros(len(self.signals_idx_b), dtype=torch.long)
# signal dict
signal_dict = {
'prediction' : prediction,
'last_error' : last_error,
'last_signal' : last_signal
}
# push data to device
features = features.to(device)
periods = periods.to(device)
lpcs = lpcs.to(device)
# run feature encoding
c = self.frame_rate_network(features.unsqueeze(0), periods.unsqueeze(0))
for frame_index in range(num_frames):
frame_start = frame_index * self.frame_size
pitch_corr = features[frame_index + self.feature_history, pitch_corr_position]
a = - torch.flip(lpcs[frame_index + self.feature_history], [0])
current_c = c[:, frame_index : frame_index + 1, :]
for i in range(0, self.frame_size, self.group_size_gru_a):
pcm_position = frame_start + i + lpc_order
output_position = frame_start + i
# calculate newest prediction
prediction[pcm_position] = torch.sum(last_signal[pcm_position - lpc_order + 1: pcm_position + 1] * a)
# prepare input
for slot in range(self.group_size_gru_a):
k = slot - self.group_size_gru_a + 1
for idx, name in enumerate(self.signals):
input_signals[idx + slot * num_input_signals] = lin2ulawq(
signal_dict[name][pcm_position + k]
)
# run GRU A
embed_signals = self.signal_embedding(input_signals.reshape((1, 1, -1)))
embed_signals = torch.flatten(embed_signals, 2)
y = torch.cat((embed_signals, current_c), dim=-1)
h_a, gru_a_state = self.gru_a(y, gru_a_state)
# loop over substeps_a
for step_a in range(self.substeps_a):
# prepare conditioning input
for slot in range(self.group_size_subcondition_a):
k = slot - self.group_size_subcondition_a + 1
for idx, name in enumerate(self.subcondition_signals_a):
c_signals_a[idx + slot * num_input_signals] = lin2ulawq(
signal_dict[name][pcm_position + k]
)
# subconditioning
h_a = self.subconditioner_a.single_step(step_a, h_a, c_signals_a.reshape((1, 1, -1)))
# run GRU B
y = torch.cat((h_a, current_c), dim=-1)
h_b, gru_b_state = self.gru_b(y, gru_b_state)
# loop over substeps b
for step_b in range(self.substeps_b):
# prepare subconditioning input
for idx, name in enumerate(self.subcondition_signals_b):
c_signals_b[idx] = lin2ulawq(
signal_dict[name][pcm_position]
)
# subcondition
h_b = self.subconditioner_b.single_step(step_b, h_b, c_signals_b.reshape((1, 1, -1)))
# run dual FC
probs = torch.softmax(self.dual_fc[step_b](h_b), dim=-1)
# sample
new_exc = ulaw2lin(sample_excitation(probs, pitch_corr))
# update signals
sig = new_exc + prediction[pcm_position]
last_error[pcm_position + 1] = new_exc
last_signal[pcm_position + 1] = sig
mem = 0.85 * mem + float(sig)
output[output_position] = clip_to_int16(round(mem))
# increase positions
pcm_position += 1
output_position += 1
# calculate next prediction
prediction[pcm_position] = torch.sum(last_signal[pcm_position - lpc_order + 1: pcm_position + 1] * a)
return output