opus/dnn/torch/lpcnet/models/lpcnet.py
Jan Buethe 7b8ba143f1
added copyright headers
Signed-off-by: Jan Buethe <jbuethe@amazon.de>
2023-09-05 22:31:19 +02:00

303 lines
13 KiB
Python

"""
/* Copyright (c) 2023 Amazon
Written by Jan Buethe */
/*
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
"""
import torch
from torch import nn
import numpy as np
from utils.ulaw import lin2ulawq, ulaw2lin
from utils.sample import sample_excitation
from utils.pcm import clip_to_int16
from utils.sparsification import GRUSparsifier, calculate_gru_flops_per_step
from utils.layers import DualFC
from utils.misc import get_pdf_from_tree
class LPCNet(nn.Module):
def __init__(self, config):
super(LPCNet, self).__init__()
#
self.input_layout = config['input_layout']
self.feature_history = config['feature_history']
self.feature_lookahead = config['feature_lookahead']
# frame rate network parameters
self.feature_dimension = config['feature_dimension']
self.period_embedding_dim = config['period_embedding_dim']
self.period_levels = config['period_levels']
self.feature_channels = self.feature_dimension + self.period_embedding_dim
self.feature_conditioning_dim = config['feature_conditioning_dim']
self.feature_conv_kernel_size = config['feature_conv_kernel_size']
# frame rate network layers
self.period_embedding = nn.Embedding(self.period_levels, self.period_embedding_dim)
self.feature_conv1 = nn.Conv1d(self.feature_channels, self.feature_conditioning_dim, self.feature_conv_kernel_size, padding='valid')
self.feature_conv2 = nn.Conv1d(self.feature_conditioning_dim, self.feature_conditioning_dim, self.feature_conv_kernel_size, padding='valid')
self.feature_dense1 = nn.Linear(self.feature_conditioning_dim, self.feature_conditioning_dim)
self.feature_dense2 = nn.Linear(*(2*[self.feature_conditioning_dim]))
# sample rate network parameters
self.frame_size = config['frame_size']
self.signal_levels = config['signal_levels']
self.signal_embedding_dim = config['signal_embedding_dim']
self.gru_a_units = config['gru_a_units']
self.gru_b_units = config['gru_b_units']
self.output_levels = config['output_levels']
self.hsampling = config.get('hsampling', False)
self.gru_a_input_dim = len(self.input_layout['signals']) * self.signal_embedding_dim + self.feature_conditioning_dim
self.gru_b_input_dim = self.gru_a_units + self.feature_conditioning_dim
# sample rate network layers
self.signal_embedding = nn.Embedding(self.signal_levels, self.signal_embedding_dim)
self.gru_a = nn.GRU(self.gru_a_input_dim, self.gru_a_units, batch_first=True)
self.gru_b = nn.GRU(self.gru_b_input_dim, self.gru_b_units, batch_first=True)
self.dual_fc = DualFC(self.gru_b_units, self.output_levels)
# sparsification
self.sparsifier = []
# GRU A
if 'gru_a' in config['sparsification']:
gru_config = config['sparsification']['gru_a']
task_list = [(self.gru_a, gru_config['params'])]
self.sparsifier.append(GRUSparsifier(task_list,
gru_config['start'],
gru_config['stop'],
gru_config['interval'],
gru_config['exponent'])
)
self.gru_a_flops_per_step = calculate_gru_flops_per_step(self.gru_a,
gru_config['params'], drop_input=True)
else:
self.gru_a_flops_per_step = calculate_gru_flops_per_step(self.gru_a, drop_input=True)
# GRU B
if 'gru_b' in config['sparsification']:
gru_config = config['sparsification']['gru_b']
task_list = [(self.gru_b, gru_config['params'])]
self.sparsifier.append(GRUSparsifier(task_list,
gru_config['start'],
gru_config['stop'],
gru_config['interval'],
gru_config['exponent'])
)
self.gru_b_flops_per_step = calculate_gru_flops_per_step(self.gru_b,
gru_config['params'])
else:
self.gru_b_flops_per_step = calculate_gru_flops_per_step(self.gru_b)
# inference parameters
self.lpc_gamma = config.get('lpc_gamma', 1)
def sparsify(self):
for sparsifier in self.sparsifier:
sparsifier.step()
def get_gflops(self, fs, verbose=False):
gflops = 0
# frame rate network
conditioning_dim = self.feature_conditioning_dim
feature_channels = self.feature_channels
frame_rate = fs / self.frame_size
frame_rate_network_complexity = 1e-9 * 2 * (5 * conditioning_dim + 3 * feature_channels) * conditioning_dim * frame_rate
if verbose:
print(f"frame rate network: {frame_rate_network_complexity} GFLOPS")
gflops += frame_rate_network_complexity
# gru a
gru_a_rate = fs
gru_a_complexity = 1e-9 * gru_a_rate * self.gru_a_flops_per_step
if verbose:
print(f"gru A: {gru_a_complexity} GFLOPS")
gflops += gru_a_complexity
# gru b
gru_b_rate = fs
gru_b_complexity = 1e-9 * gru_b_rate * self.gru_b_flops_per_step
if verbose:
print(f"gru B: {gru_b_complexity} GFLOPS")
gflops += gru_b_complexity
# dual fcs
fc = self.dual_fc
rate = fs
input_size = fc.dense1.in_features
output_size = fc.dense1.out_features
dual_fc_complexity = 1e-9 * (4 * input_size * output_size + 22 * output_size) * rate
if self.hsampling:
dual_fc_complexity /= 8
if verbose:
print(f"dual_fc: {dual_fc_complexity} GFLOPS")
gflops += dual_fc_complexity
if verbose:
print(f'total: {gflops} GFLOPS')
return gflops
def frame_rate_network(self, features, periods):
embedded_periods = torch.flatten(self.period_embedding(periods), 2, 3)
features = torch.concat((features, embedded_periods), dim=-1)
# convert to channels first and calculate conditioning vector
c = torch.permute(features, [0, 2, 1])
c = torch.tanh(self.feature_conv1(c))
c = torch.tanh(self.feature_conv2(c))
# back to channels last
c = torch.permute(c, [0, 2, 1])
c = torch.tanh(self.feature_dense1(c))
c = torch.tanh(self.feature_dense2(c))
return c
def sample_rate_network(self, signals, c, gru_states):
embedded_signals = torch.flatten(self.signal_embedding(signals), 2, 3)
c_upsampled = torch.repeat_interleave(c, self.frame_size, dim=1)
y = torch.concat((embedded_signals, c_upsampled), dim=-1)
y, gru_a_state = self.gru_a(y, gru_states[0])
y = torch.concat((y, c_upsampled), dim=-1)
y, gru_b_state = self.gru_b(y, gru_states[1])
y = self.dual_fc(y)
if self.hsampling:
y = torch.sigmoid(y)
log_probs = torch.log(get_pdf_from_tree(y) + 1e-6)
else:
log_probs = torch.log_softmax(y, dim=-1)
return log_probs, (gru_a_state, gru_b_state)
def decoder(self, signals, c, gru_states):
embedded_signals = torch.flatten(self.signal_embedding(signals), 2, 3)
y = torch.concat((embedded_signals, c), dim=-1)
y, gru_a_state = self.gru_a(y, gru_states[0])
y = torch.concat((y, c), dim=-1)
y, gru_b_state = self.gru_b(y, gru_states[1])
y = self.dual_fc(y)
if self.hsampling:
y = torch.sigmoid(y)
probs = get_pdf_from_tree(y)
else:
probs = torch.softmax(y, dim=-1)
return probs, (gru_a_state, gru_b_state)
def forward(self, features, periods, signals, gru_states):
c = self.frame_rate_network(features, periods)
log_probs, _ = self.sample_rate_network(signals, c, gru_states)
return log_probs
def generate(self, features, periods, lpcs):
with torch.no_grad():
device = self.parameters().__next__().device
num_frames = features.shape[0] - self.feature_history - self.feature_lookahead
lpc_order = lpcs.shape[-1]
num_input_signals = len(self.input_layout['signals'])
pitch_corr_position = self.input_layout['features']['pitch_corr'][0]
# signal buffers
pcm = torch.zeros((num_frames * self.frame_size + lpc_order))
output = torch.zeros((num_frames * self.frame_size), dtype=torch.int16)
mem = 0
# state buffers
gru_a_state = torch.zeros((1, 1, self.gru_a_units))
gru_b_state = torch.zeros((1, 1, self.gru_b_units))
gru_states = [gru_a_state, gru_b_state]
input_signals = torch.zeros((1, 1, num_input_signals), dtype=torch.long) + 128
# push data to device
features = features.to(device)
periods = periods.to(device)
lpcs = lpcs.to(device)
# lpc weighting
weights = torch.FloatTensor([self.lpc_gamma ** (i + 1) for i in range(lpc_order)]).to(device)
lpcs = lpcs * weights
# run feature encoding
c = self.frame_rate_network(features.unsqueeze(0), periods.unsqueeze(0))
for frame_index in range(num_frames):
frame_start = frame_index * self.frame_size
pitch_corr = features[frame_index + self.feature_history, pitch_corr_position]
a = - torch.flip(lpcs[frame_index + self.feature_history], [0])
current_c = c[:, frame_index : frame_index + 1, :]
for i in range(self.frame_size):
pcm_position = frame_start + i + lpc_order
output_position = frame_start + i
# prepare input
pred = torch.sum(pcm[pcm_position - lpc_order : pcm_position] * a)
if 'prediction' in self.input_layout['signals']:
input_signals[0, 0, self.input_layout['signals']['prediction']] = lin2ulawq(pred)
# run single step of sample rate network
probs, gru_states = self.decoder(
input_signals,
current_c,
gru_states
)
# sample from output
exc_ulaw = sample_excitation(probs, pitch_corr)
# signal generation
exc = ulaw2lin(exc_ulaw)
sig = exc + pred
pcm[pcm_position] = sig
mem = 0.85 * mem + float(sig)
output[output_position] = clip_to_int16(round(mem))
# buffer update
if 'last_signal' in self.input_layout['signals']:
input_signals[0, 0, self.input_layout['signals']['last_signal']] = lin2ulawq(sig)
if 'last_error' in self.input_layout['signals']:
input_signals[0, 0, self.input_layout['signals']['last_error']] = lin2ulawq(exc)
return output