mirror of
https://github.com/xiph/opus.git
synced 2025-06-05 15:03:39 +00:00
362 lines
10 KiB
C
362 lines
10 KiB
C
/* Copyright (c) 2007-2008 CSIRO
|
|
Copyright (c) 2007-2009 Xiph.Org Foundation
|
|
Written by Jean-Marc Valin */
|
|
/*
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions
|
|
are met:
|
|
|
|
- Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
|
|
- Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
|
|
- Neither the name of the Xiph.org Foundation nor the names of its
|
|
contributors may be used to endorse or promote products derived from
|
|
this software without specific prior written permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
|
|
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include "config.h"
|
|
#endif
|
|
|
|
#include "mathops.h"
|
|
#include "cwrs.h"
|
|
#include "vq.h"
|
|
#include "arch.h"
|
|
#include "os_support.h"
|
|
#include "rate.h"
|
|
|
|
#ifndef M_PI
|
|
#define M_PI 3.141592653
|
|
#endif
|
|
|
|
static void exp_rotation(celt_norm_t *X, int len, int dir, int stride, int K)
|
|
{
|
|
int i, k, iter;
|
|
celt_word16_t c, s;
|
|
celt_word16_t gain, theta;
|
|
celt_norm_t *Xptr;
|
|
gain = celt_div((celt_word32_t)MULT16_16(Q15_ONE,len),(celt_word32_t)(3+len+6*K));
|
|
/* FIXME: Make that HALF16 instead of HALF32 */
|
|
theta = SUB16(Q15ONE, HALF32(MULT16_16_Q15(gain,gain)));
|
|
/*if (len==30)
|
|
{
|
|
for (i=0;i<len;i++)
|
|
X[i] = 0;
|
|
X[14] = 1;
|
|
}*/
|
|
c = celt_cos_norm(EXTEND32(theta));
|
|
s = dir*celt_cos_norm(EXTEND32(SUB16(Q15ONE,theta))); /* sin(theta) */
|
|
if (len > 8*stride)
|
|
stride *= len/(8*stride);
|
|
iter = 1;
|
|
for (k=0;k<iter;k++)
|
|
{
|
|
/* We could use MULT16_16_P15 instead of MULT16_16_Q15 for more accuracy,
|
|
but at this point, I really don't think it's necessary */
|
|
Xptr = X;
|
|
for (i=0;i<len-stride;i++)
|
|
{
|
|
celt_norm_t x1, x2;
|
|
x1 = Xptr[0];
|
|
x2 = Xptr[stride];
|
|
Xptr[stride] = MULT16_16_Q15(c,x2) + MULT16_16_Q15(s,x1);
|
|
*Xptr++ = MULT16_16_Q15(c,x1) - MULT16_16_Q15(s,x2);
|
|
}
|
|
Xptr = &X[len-2*stride-1];
|
|
for (i=len-2*stride-1;i>=0;i--)
|
|
{
|
|
celt_norm_t x1, x2;
|
|
x1 = Xptr[0];
|
|
x2 = Xptr[stride];
|
|
Xptr[stride] = MULT16_16_Q15(c,x2) + MULT16_16_Q15(s,x1);
|
|
*Xptr-- = MULT16_16_Q15(c,x1) - MULT16_16_Q15(s,x2);
|
|
}
|
|
}
|
|
/*if (len==30)
|
|
{
|
|
for (i=0;i<len;i++)
|
|
printf ("%f ", X[i]);
|
|
printf ("\n");
|
|
exit(0);
|
|
}*/
|
|
}
|
|
|
|
|
|
/** Takes the pitch vector and the decoded residual vector, computes the gain
|
|
that will give ||p+g*y||=1 and mixes the residual with the pitch. */
|
|
static void normalise_residual(int * restrict iy, celt_norm_t * restrict X, int N, int K, celt_word32_t Ryy)
|
|
{
|
|
int i;
|
|
celt_word32_t g;
|
|
|
|
g = celt_rsqrt(Ryy);
|
|
|
|
i=0;
|
|
do
|
|
X[i] = SHR16(MULT16_16_16(g, iy[i]),1);
|
|
while (++i < N);
|
|
}
|
|
|
|
void alg_quant(celt_norm_t *X, int N, int K, int spread, ec_enc *enc)
|
|
{
|
|
VARDECL(celt_norm_t, y);
|
|
VARDECL(int, iy);
|
|
VARDECL(celt_word16_t, signx);
|
|
int j, is;
|
|
celt_word16_t s;
|
|
int pulsesLeft;
|
|
celt_word32_t sum;
|
|
celt_word32_t xy, yy;
|
|
int N_1; /* Inverse of N, in Q14 format (even for float) */
|
|
#ifdef FIXED_POINT
|
|
int yshift;
|
|
#endif
|
|
SAVE_STACK;
|
|
|
|
K = get_pulses(K);
|
|
#ifdef FIXED_POINT
|
|
yshift = 13-celt_ilog2(K);
|
|
#endif
|
|
|
|
ALLOC(y, N, celt_norm_t);
|
|
ALLOC(iy, N, int);
|
|
ALLOC(signx, N, celt_word16_t);
|
|
N_1 = 512/N;
|
|
|
|
if (spread)
|
|
exp_rotation(X, N, 1, spread, K);
|
|
|
|
sum = 0;
|
|
j=0; do {
|
|
if (X[j]>0)
|
|
signx[j]=1;
|
|
else {
|
|
signx[j]=-1;
|
|
X[j]=-X[j];
|
|
}
|
|
iy[j] = 0;
|
|
y[j] = 0;
|
|
} while (++j<N);
|
|
|
|
xy = yy = 0;
|
|
|
|
pulsesLeft = K;
|
|
|
|
/* Do a pre-search by projecting on the pyramid */
|
|
if (K > (N>>1))
|
|
{
|
|
celt_word16_t rcp;
|
|
sum=0;
|
|
j=0; do {
|
|
sum += X[j];
|
|
} while (++j<N);
|
|
|
|
#ifdef FIXED_POINT
|
|
if (sum <= K)
|
|
#else
|
|
if (sum <= EPSILON)
|
|
#endif
|
|
{
|
|
X[0] = QCONST16(1.f,14);
|
|
j=1; do
|
|
X[j]=0;
|
|
while (++j<N);
|
|
sum = QCONST16(1.f,14);
|
|
}
|
|
/* Do we have sufficient accuracy here? */
|
|
rcp = EXTRACT16(MULT16_32_Q16(K-1, celt_rcp(sum)));
|
|
j=0; do {
|
|
#ifdef FIXED_POINT
|
|
/* It's really important to round *towards zero* here */
|
|
iy[j] = MULT16_16_Q15(X[j],rcp);
|
|
#else
|
|
iy[j] = floor(rcp*X[j]);
|
|
#endif
|
|
y[j] = SHL16(iy[j],yshift);
|
|
yy = MAC16_16(yy, y[j],y[j]);
|
|
xy = MAC16_16(xy, X[j],y[j]);
|
|
y[j] *= 2;
|
|
pulsesLeft -= iy[j];
|
|
} while (++j<N);
|
|
}
|
|
celt_assert2(pulsesLeft>=1, "Allocated too many pulses in the quick pass");
|
|
|
|
while (pulsesLeft > 0)
|
|
{
|
|
int pulsesAtOnce=1;
|
|
int best_id;
|
|
celt_word16_t magnitude;
|
|
celt_word32_t best_num = -VERY_LARGE16;
|
|
celt_word16_t best_den = 0;
|
|
#ifdef FIXED_POINT
|
|
int rshift;
|
|
#endif
|
|
/* Decide on how many pulses to find at once */
|
|
pulsesAtOnce = (pulsesLeft*N_1)>>9; /* pulsesLeft/N */
|
|
if (pulsesAtOnce<1)
|
|
pulsesAtOnce = 1;
|
|
#ifdef FIXED_POINT
|
|
rshift = yshift+1+celt_ilog2(K-pulsesLeft+pulsesAtOnce);
|
|
#endif
|
|
magnitude = SHL16(pulsesAtOnce, yshift);
|
|
|
|
best_id = 0;
|
|
/* The squared magnitude term gets added anyway, so we might as well
|
|
add it outside the loop */
|
|
yy = MAC16_16(yy, magnitude,magnitude);
|
|
/* Choose between fast and accurate strategy depending on where we are in the search */
|
|
/* This should ensure that anything we can process will have a better score */
|
|
j=0;
|
|
do {
|
|
celt_word16_t Rxy, Ryy;
|
|
/* Select sign based on X[j] alone */
|
|
s = magnitude;
|
|
/* Temporary sums of the new pulse(s) */
|
|
Rxy = EXTRACT16(SHR32(MAC16_16(xy, s,X[j]),rshift));
|
|
/* We're multiplying y[j] by two so we don't have to do it here */
|
|
Ryy = EXTRACT16(SHR32(MAC16_16(yy, s,y[j]),rshift));
|
|
|
|
/* Approximate score: we maximise Rxy/sqrt(Ryy) (we're guaranteed that
|
|
Rxy is positive because the sign is pre-computed) */
|
|
Rxy = MULT16_16_Q15(Rxy,Rxy);
|
|
/* The idea is to check for num/den >= best_num/best_den, but that way
|
|
we can do it without any division */
|
|
/* OPT: Make sure to use conditional moves here */
|
|
if (MULT16_16(best_den, Rxy) > MULT16_16(Ryy, best_num))
|
|
{
|
|
best_den = Ryy;
|
|
best_num = Rxy;
|
|
best_id = j;
|
|
}
|
|
} while (++j<N);
|
|
|
|
j = best_id;
|
|
is = pulsesAtOnce;
|
|
s = SHL16(is, yshift);
|
|
|
|
/* Updating the sums of the new pulse(s) */
|
|
xy = xy + MULT16_16(s,X[j]);
|
|
/* We're multiplying y[j] by two so we don't have to do it here */
|
|
yy = yy + MULT16_16(s,y[j]);
|
|
|
|
/* Only now that we've made the final choice, update y/iy */
|
|
/* Multiplying y[j] by 2 so we don't have to do it everywhere else */
|
|
y[j] += 2*s;
|
|
iy[j] += is;
|
|
pulsesLeft -= pulsesAtOnce;
|
|
}
|
|
j=0;
|
|
do {
|
|
X[j] = MULT16_16(signx[j],X[j]);
|
|
if (signx[j] < 0)
|
|
iy[j] = -iy[j];
|
|
} while (++j<N);
|
|
encode_pulses(iy, N, K, enc);
|
|
|
|
/* Recompute the gain in one pass to reduce the encoder-decoder mismatch
|
|
due to the recursive computation used in quantisation. */
|
|
normalise_residual(iy, X, N, K, EXTRACT16(SHR32(yy,2*yshift)));
|
|
if (spread)
|
|
exp_rotation(X, N, -1, spread, K);
|
|
RESTORE_STACK;
|
|
}
|
|
|
|
|
|
/** Decode pulse vector and combine the result with the pitch vector to produce
|
|
the final normalised signal in the current band. */
|
|
void alg_unquant(celt_norm_t *X, int N, int K, int spread, ec_dec *dec)
|
|
{
|
|
int i;
|
|
celt_word32_t Ryy;
|
|
VARDECL(int, iy);
|
|
SAVE_STACK;
|
|
K = get_pulses(K);
|
|
ALLOC(iy, N, int);
|
|
decode_pulses(iy, N, K, dec);
|
|
Ryy = 0;
|
|
i=0;
|
|
do {
|
|
Ryy = MAC16_16(Ryy, iy[i], iy[i]);
|
|
} while (++i < N);
|
|
normalise_residual(iy, X, N, K, Ryy);
|
|
if (spread)
|
|
exp_rotation(X, N, -1, spread, K);
|
|
RESTORE_STACK;
|
|
}
|
|
|
|
celt_word16_t renormalise_vector(celt_norm_t *X, celt_word16_t value, int N, int stride)
|
|
{
|
|
int i;
|
|
celt_word32_t E = EPSILON;
|
|
celt_word16_t rE;
|
|
celt_word16_t g;
|
|
celt_norm_t *xptr = X;
|
|
for (i=0;i<N;i++)
|
|
{
|
|
E = MAC16_16(E, *xptr, *xptr);
|
|
xptr += stride;
|
|
}
|
|
|
|
rE = celt_sqrt(E);
|
|
#ifdef FIXED_POINT
|
|
if (rE <= 128)
|
|
g = Q15ONE;
|
|
else
|
|
#endif
|
|
g = MULT16_16_Q15(value,celt_rcp(SHL32(rE,9)));
|
|
xptr = X;
|
|
for (i=0;i<N;i++)
|
|
{
|
|
*xptr = PSHR32(MULT16_16(g, *xptr),8);
|
|
xptr += stride;
|
|
}
|
|
return rE;
|
|
}
|
|
|
|
static void fold(const CELTMode *m, int N, const celt_norm_t * restrict Y, celt_norm_t * restrict P, int N0, int B)
|
|
{
|
|
int j;
|
|
int id = N0 % B;
|
|
/* Here, we assume that id will never be greater than N0, i.e. that
|
|
no band is wider than N0. In the unlikely case it happens, we set
|
|
everything to zero */
|
|
/*{
|
|
int offset = (N0*C - (id+C*N))/2;
|
|
if (offset > C*N0/16)
|
|
offset = C*N0/16;
|
|
offset -= offset % (C*B);
|
|
if (offset < 0)
|
|
offset = 0;
|
|
//printf ("%d\n", offset);
|
|
id += offset;
|
|
}*/
|
|
if (id+N>N0)
|
|
for (j=0;j<N;j++)
|
|
P[j] = 0;
|
|
else
|
|
for (j=0;j<N;j++)
|
|
P[j] = Y[id++];
|
|
}
|
|
|
|
void intra_fold(const CELTMode *m, int N, const celt_norm_t * restrict Y, celt_norm_t * restrict P, int N0, int B)
|
|
{
|
|
fold(m, N, Y, P, N0, B);
|
|
renormalise_vector(P, Q15ONE, N, 1);
|
|
}
|
|
|