
This renames ec_dec_cdf() to ec_dec_icdf(), and changes the functionality to use an "inverse" CDF table, where icdf[i]=ft-cdf[i+1]. The first entry is omitted entirely. It also adds a corresonding ec_enc_icdf() to the encoder, which uses the same table. One could use ec_encode_bin() by converting the values in the tables back to normal CDF values, but the icdf[] table already has them in the form ec_encode_bin() wants to use them, so there's no reason to translate them and then translate them back. This is done primarily to allow SILK to use the range coder with 8-bit probability tables containing cumulative frequencies that span the full range 0...256. With an 8-bit table, the final 256 of a normal CDF becomes 0 in the "inverse" CDF. It's the 0 at the start of a normal CDF which would become 256, but this is the value we omit, as it already has to be special-cased in the encoder, and is not used at all in the decoder.
267 lines
8.3 KiB
C
267 lines
8.3 KiB
C
/* Copyright (c) 2001-2008 Timothy B. Terriberry
|
|
Copyright (c) 2008-2009 Xiph.Org Foundation */
|
|
/*
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions
|
|
are met:
|
|
|
|
- Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
|
|
- Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
|
|
- Neither the name of the Xiph.org Foundation nor the names of its
|
|
contributors may be used to endorse or promote products derived from
|
|
this software without specific prior written permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
|
|
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include "config.h"
|
|
#endif
|
|
|
|
#include "arch.h"
|
|
#include "entenc.h"
|
|
#include "mfrngcod.h"
|
|
|
|
|
|
|
|
/*A range encoder.
|
|
See rangedec.c and the references for implementation details
|
|
\cite{Mar79,MNW98}.
|
|
|
|
@INPROCEEDINGS{Mar79,
|
|
author="Martin, G.N.N.",
|
|
title="Range encoding: an algorithm for removing redundancy from a digitised
|
|
message",
|
|
booktitle="Video \& Data Recording Conference",
|
|
year=1979,
|
|
address="Southampton",
|
|
month=Jul
|
|
}
|
|
@ARTICLE{MNW98,
|
|
author="Alistair Moffat and Radford Neal and Ian H. Witten",
|
|
title="Arithmetic Coding Revisited",
|
|
journal="{ACM} Transactions on Information Systems",
|
|
year=1998,
|
|
volume=16,
|
|
number=3,
|
|
pages="256--294",
|
|
month=Jul,
|
|
URL="http://www.stanford.edu/class/ee398/handouts/papers/Moffat98ArithmCoding.pdf"
|
|
}*/
|
|
|
|
|
|
|
|
/*Outputs a symbol, with a carry bit.
|
|
If there is a potential to propagate a carry over several symbols, they are
|
|
buffered until it can be determined whether or not an actual carry will
|
|
occur.
|
|
If the counter for the buffered symbols overflows, then the stream becomes
|
|
undecodable.
|
|
This gives a theoretical limit of a few billion symbols in a single packet on
|
|
32-bit systems.
|
|
The alternative is to truncate the range in order to force a carry, but
|
|
requires similar carry tracking in the decoder, needlessly slowing it down.*/
|
|
static void ec_enc_carry_out(ec_enc *_this,int _c){
|
|
if(_c!=EC_SYM_MAX){
|
|
/*No further carry propagation possible, flush buffer.*/
|
|
int carry;
|
|
carry=_c>>EC_SYM_BITS;
|
|
/*Don't output a byte on the first write.
|
|
This compare should be taken care of by branch-prediction thereafter.*/
|
|
if(_this->rem>=0)_this->error|=ec_byte_write(_this->buf,_this->rem+carry);
|
|
if(_this->ext>0){
|
|
unsigned sym;
|
|
sym=EC_SYM_MAX+carry&EC_SYM_MAX;
|
|
do _this->error|=ec_byte_write(_this->buf,sym);
|
|
while(--(_this->ext)>0);
|
|
}
|
|
_this->rem=_c&EC_SYM_MAX;
|
|
}
|
|
else _this->ext++;
|
|
}
|
|
|
|
static inline void ec_enc_normalize(ec_enc *_this){
|
|
/*If the range is too small, output some bits and rescale it.*/
|
|
while(_this->rng<=EC_CODE_BOT){
|
|
ec_enc_carry_out(_this,(int)(_this->low>>EC_CODE_SHIFT));
|
|
/*Move the next-to-high-order symbol into the high-order position.*/
|
|
_this->low=_this->low<<EC_SYM_BITS&EC_CODE_TOP-1;
|
|
_this->rng<<=EC_SYM_BITS;
|
|
_this->nbits_total+=EC_SYM_BITS;
|
|
}
|
|
}
|
|
|
|
void ec_enc_init(ec_enc *_this,ec_byte_buffer *_buf){
|
|
_this->buf=_buf;
|
|
_this->rem=-1;
|
|
_this->ext=0;
|
|
_this->low=0;
|
|
_this->rng=EC_CODE_TOP;
|
|
_this->end_window=0;
|
|
_this->nend_bits=0;
|
|
/*This is the offset from which ec_enc_tell() will subtract partial bits.*/
|
|
_this->nbits_total=EC_CODE_BITS+1;
|
|
_this->error=0;
|
|
}
|
|
|
|
void ec_encode(ec_enc *_this,unsigned _fl,unsigned _fh,unsigned _ft){
|
|
ec_uint32 r;
|
|
r=_this->rng/_ft;
|
|
if(_fl>0){
|
|
_this->low+=_this->rng-IMUL32(r,(_ft-_fl));
|
|
_this->rng=IMUL32(r,(_fh-_fl));
|
|
}
|
|
else _this->rng-=IMUL32(r,(_ft-_fh));
|
|
ec_enc_normalize(_this);
|
|
}
|
|
|
|
void ec_encode_bin(ec_enc *_this,unsigned _fl,unsigned _fh,unsigned _bits){
|
|
ec_uint32 r;
|
|
r=_this->rng>>_bits;
|
|
if(_fl>0){
|
|
_this->low+=_this->rng-IMUL32(r,((1<<_bits)-_fl));
|
|
_this->rng=IMUL32(r,(_fh-_fl));
|
|
}
|
|
else _this->rng-=IMUL32(r,((1<<_bits)-_fh));
|
|
ec_enc_normalize(_this);
|
|
}
|
|
|
|
/*The probability of having a "one" is given in 1/65536.*/
|
|
void ec_enc_bit_prob(ec_enc *_this,int _val,unsigned _prob){
|
|
ec_uint32 r;
|
|
ec_uint32 s;
|
|
ec_uint32 l;
|
|
r=_this->rng;
|
|
l=_this->low;
|
|
s=(r>>16)*_prob;
|
|
r-=s;
|
|
if(_val)_this->low=l+r;
|
|
_this->rng=_val?s:r;
|
|
ec_enc_normalize(_this);
|
|
}
|
|
|
|
/*The probability of having a "one" is 1/(1<<_logp).*/
|
|
void ec_enc_bit_logp(ec_enc *_this,int _val,unsigned _logp){
|
|
ec_uint32 r;
|
|
ec_uint32 s;
|
|
ec_uint32 l;
|
|
r=_this->rng;
|
|
l=_this->low;
|
|
s=r>>_logp;
|
|
r-=s;
|
|
if(_val)_this->low=l+r;
|
|
_this->rng=_val?s:r;
|
|
ec_enc_normalize(_this);
|
|
}
|
|
|
|
void ec_enc_icdf(ec_enc *_this,int _s,const unsigned char *_icdf,unsigned _ftb){
|
|
ec_uint32 r;
|
|
r=_this->rng>>_ftb;
|
|
if(_s>0){
|
|
_this->low+=_this->rng-IMUL32(r,_icdf[_s-1]);
|
|
_this->rng=IMUL32(r,_icdf[_s-1]-_icdf[_s]);
|
|
}
|
|
else _this->rng-=IMUL32(r,_icdf[_s]);
|
|
ec_enc_normalize(_this);
|
|
}
|
|
|
|
void ec_enc_bits(ec_enc *_this,ec_uint32 _fl,unsigned _bits){
|
|
ec_window window;
|
|
int used;
|
|
window=_this->end_window;
|
|
used=_this->nend_bits;
|
|
if(used+_bits>EC_WINDOW_SIZE){
|
|
do{
|
|
_this->error|=
|
|
ec_byte_write_at_end(_this->buf,(unsigned)window&EC_SYM_MAX);
|
|
window>>=EC_SYM_BITS;
|
|
used-=EC_SYM_BITS;
|
|
}
|
|
while(used>=EC_SYM_BITS);
|
|
}
|
|
window|=(ec_window)_fl<<used;
|
|
used+=_bits;
|
|
_this->end_window=window;
|
|
_this->nend_bits=used;
|
|
_this->nbits_total+=_bits;
|
|
}
|
|
|
|
ec_uint32 ec_enc_tell(ec_enc *_this,int _b){
|
|
ec_uint32 nbits;
|
|
ec_uint32 r;
|
|
int l;
|
|
/*To handle the non-integral number of bits still left in the decoder state,
|
|
we compute the worst-case number of bits of low that must be encoded to
|
|
ensure that the value is inside the range for any possible subsequent
|
|
bits.
|
|
The computation here is independent of low itself (the decoder does not
|
|
even track that value), even though the real number of bits used after
|
|
ec_enc_done() may be 1 smaller if rng is a power of two and the
|
|
corresponding trailing bits of low are all zeros.
|
|
If we did try to track that special case, then coding a value with a
|
|
probability of 1/(1<<n) might sometimes appear to use more than n bits.
|
|
This may help explain the surprising result that a newly initialized
|
|
encoder claims to have used 1 bit.*/
|
|
nbits=_this->nbits_total<<_b;
|
|
l=EC_ILOG(_this->rng);
|
|
r=_this->rng>>l-16;
|
|
while(_b-->0){
|
|
int b;
|
|
r=r*r>>15;
|
|
b=(int)(r>>16);
|
|
l=l<<1|b;
|
|
r>>=b;
|
|
}
|
|
return nbits-l;
|
|
}
|
|
|
|
void ec_enc_done(ec_enc *_this){
|
|
ec_window window;
|
|
int used;
|
|
ec_uint32 msk;
|
|
ec_uint32 end;
|
|
int l;
|
|
/*We output the minimum number of bits that ensures that the symbols encoded
|
|
thus far will be decoded correctly regardless of the bits that follow.*/
|
|
l=EC_CODE_BITS-EC_ILOG(_this->rng);
|
|
msk=EC_CODE_TOP-1>>l;
|
|
end=_this->low+msk&~msk;
|
|
if((end|msk)>=_this->low+_this->rng){
|
|
l++;
|
|
msk>>=1;
|
|
end=_this->low+msk&~msk;
|
|
}
|
|
while(l>0){
|
|
ec_enc_carry_out(_this,(int)(end>>EC_CODE_SHIFT));
|
|
end=end<<EC_SYM_BITS&EC_CODE_TOP-1;
|
|
l-=EC_SYM_BITS;
|
|
}
|
|
/*If we have a buffered byte flush it into the output buffer.*/
|
|
if(_this->rem>=0||_this->ext>0)ec_enc_carry_out(_this,0);
|
|
/*If we have buffered extra bits, flush them as well.*/
|
|
window=_this->end_window;
|
|
used=_this->nend_bits;
|
|
while(used>=EC_SYM_BITS){
|
|
_this->error|=
|
|
ec_byte_write_at_end(_this->buf,(unsigned)window&EC_SYM_MAX);
|
|
window>>=EC_SYM_BITS;
|
|
used-=EC_SYM_BITS;
|
|
}
|
|
/*Clear any excess space and add any remaining extra bits to the last byte.*/
|
|
if(!_this->error)_this->error=ec_byte_write_done(_this->buf,-l,window,used);
|
|
}
|