opus/dnn/torch/osce/models/no_lace.py
2023-12-20 03:42:44 -05:00

184 lines
8.4 KiB
Python

"""
/* Copyright (c) 2023 Amazon
Written by Jan Buethe */
/*
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
"""
import torch
from torch import nn
import torch.nn.functional as F
import numpy as np
from utils.layers.limited_adaptive_comb1d import LimitedAdaptiveComb1d
from utils.layers.limited_adaptive_conv1d import LimitedAdaptiveConv1d
from utils.layers.td_shaper import TDShaper
from utils.complexity import _conv1d_flop_count
from models.nns_base import NNSBase
from models.silk_feature_net_pl import SilkFeatureNetPL
from models.silk_feature_net import SilkFeatureNet
from .scale_embedding import ScaleEmbedding
class NoLACE(NNSBase):
""" Non-Linear Adaptive Coding Enhancer """
FRAME_SIZE=80
def __init__(self,
num_features=47,
pitch_embedding_dim=64,
cond_dim=256,
pitch_max=257,
kernel_size=15,
preemph=0.85,
skip=91,
comb_gain_limit_db=-6,
global_gain_limits_db=[-6, 6],
conv_gain_limits_db=[-6, 6],
numbits_range=[50, 650],
numbits_embedding_dim=8,
hidden_feature_dim=64,
partial_lookahead=True,
norm_p=2,
avg_pool_k=4,
pool_after=False):
super().__init__(skip=skip, preemph=preemph)
self.num_features = num_features
self.cond_dim = cond_dim
self.pitch_max = pitch_max
self.pitch_embedding_dim = pitch_embedding_dim
self.kernel_size = kernel_size
self.preemph = preemph
self.skip = skip
self.numbits_range = numbits_range
self.numbits_embedding_dim = numbits_embedding_dim
self.hidden_feature_dim = hidden_feature_dim
self.partial_lookahead = partial_lookahead
# pitch embedding
self.pitch_embedding = nn.Embedding(pitch_max + 1, pitch_embedding_dim)
# numbits embedding
self.numbits_embedding = ScaleEmbedding(numbits_embedding_dim, *numbits_range, logscale=True)
# feature net
if partial_lookahead:
self.feature_net = SilkFeatureNetPL(num_features + pitch_embedding_dim + 2 * numbits_embedding_dim, cond_dim, hidden_feature_dim)
else:
self.feature_net = SilkFeatureNet(num_features + pitch_embedding_dim + 2 * numbits_embedding_dim, cond_dim)
# comb filters
left_pad = self.kernel_size // 2
right_pad = self.kernel_size - 1 - left_pad
self.cf1 = LimitedAdaptiveComb1d(self.kernel_size, cond_dim, frame_size=self.FRAME_SIZE, overlap_size=40, padding=[left_pad, right_pad], max_lag=pitch_max + 1, gain_limit_db=comb_gain_limit_db, global_gain_limits_db=global_gain_limits_db, norm_p=norm_p)
self.cf2 = LimitedAdaptiveComb1d(self.kernel_size, cond_dim, frame_size=self.FRAME_SIZE, overlap_size=40, padding=[left_pad, right_pad], max_lag=pitch_max + 1, gain_limit_db=comb_gain_limit_db, global_gain_limits_db=global_gain_limits_db, norm_p=norm_p)
# spectral shaping
self.af1 = LimitedAdaptiveConv1d(1, 2, self.kernel_size, cond_dim, frame_size=self.FRAME_SIZE, use_bias=False, padding=[self.kernel_size - 1, 0], gain_limits_db=conv_gain_limits_db, norm_p=norm_p)
# non-linear transforms
self.tdshape1 = TDShaper(cond_dim, frame_size=self.FRAME_SIZE, avg_pool_k=avg_pool_k, pool_after=pool_after)
self.tdshape2 = TDShaper(cond_dim, frame_size=self.FRAME_SIZE, avg_pool_k=avg_pool_k, pool_after=pool_after)
self.tdshape3 = TDShaper(cond_dim, frame_size=self.FRAME_SIZE, avg_pool_k=avg_pool_k, pool_after=pool_after)
# combinators
self.af2 = LimitedAdaptiveConv1d(2, 2, self.kernel_size, cond_dim, frame_size=self.FRAME_SIZE, use_bias=False, padding=[self.kernel_size - 1, 0], gain_limits_db=conv_gain_limits_db, norm_p=norm_p)
self.af3 = LimitedAdaptiveConv1d(2, 2, self.kernel_size, cond_dim, frame_size=self.FRAME_SIZE, use_bias=False, padding=[self.kernel_size - 1, 0], gain_limits_db=conv_gain_limits_db, norm_p=norm_p)
self.af4 = LimitedAdaptiveConv1d(2, 1, self.kernel_size, cond_dim, frame_size=self.FRAME_SIZE, use_bias=False, padding=[self.kernel_size - 1, 0], gain_limits_db=conv_gain_limits_db, norm_p=norm_p)
# feature transforms
self.post_cf1 = nn.Conv1d(cond_dim, cond_dim, 2)
self.post_cf2 = nn.Conv1d(cond_dim, cond_dim, 2)
self.post_af1 = nn.Conv1d(cond_dim, cond_dim, 2)
self.post_af2 = nn.Conv1d(cond_dim, cond_dim, 2)
self.post_af3 = nn.Conv1d(cond_dim, cond_dim, 2)
def flop_count(self, rate=16000, verbose=False):
frame_rate = rate / self.FRAME_SIZE
# feature net
feature_net_flops = self.feature_net.flop_count(frame_rate)
comb_flops = self.cf1.flop_count(rate) + self.cf2.flop_count(rate)
af_flops = self.af1.flop_count(rate) + self.af2.flop_count(rate) + self.af3.flop_count(rate) + self.af4.flop_count(rate)
shape_flops = self.tdshape1.flop_count(rate) + self.tdshape2.flop_count(rate) + self.tdshape3.flop_count(rate)
feature_flops = (_conv1d_flop_count(self.post_cf1, frame_rate) + _conv1d_flop_count(self.post_cf2, frame_rate)
+ _conv1d_flop_count(self.post_af1, frame_rate) + _conv1d_flop_count(self.post_af2, frame_rate) + _conv1d_flop_count(self.post_af3, frame_rate))
if verbose:
print(f"feature net: {feature_net_flops / 1e6} MFLOPS")
print(f"comb filters: {comb_flops / 1e6} MFLOPS")
print(f"adaptive conv: {af_flops / 1e6} MFLOPS")
print(f"feature transforms: {feature_flops / 1e6} MFLOPS")
return feature_net_flops + comb_flops + af_flops + feature_flops + shape_flops
def feature_transform(self, f, layer):
f = f.permute(0, 2, 1)
f = F.pad(f, [1, 0])
f = torch.tanh(layer(f))
return f.permute(0, 2, 1)
def forward(self, x, features, periods, numbits, debug=False):
periods = periods.squeeze(-1)
pitch_embedding = self.pitch_embedding(periods)
numbits_embedding = self.numbits_embedding(numbits).flatten(2)
full_features = torch.cat((features, pitch_embedding, numbits_embedding), dim=-1)
cf = self.feature_net(full_features)
y = self.cf1(x, cf, periods, debug=debug)
cf = self.feature_transform(cf, self.post_cf1)
y = self.cf2(y, cf, periods, debug=debug)
cf = self.feature_transform(cf, self.post_cf2)
y = self.af1(y, cf, debug=debug)
cf = self.feature_transform(cf, self.post_af1)
y1 = y[:, 0:1, :]
y2 = self.tdshape1(y[:, 1:2, :], cf)
y = torch.cat((y1, y2), dim=1)
y = self.af2(y, cf, debug=debug)
cf = self.feature_transform(cf, self.post_af2)
y1 = y[:, 0:1, :]
y2 = self.tdshape2(y[:, 1:2, :], cf)
y = torch.cat((y1, y2), dim=1)
y = self.af3(y, cf, debug=debug)
cf = self.feature_transform(cf, self.post_af3)
y1 = y[:, 0:1, :]
y2 = self.tdshape3(y[:, 1:2, :], cf)
y = torch.cat((y1, y2), dim=1)
y = self.af4(y, cf, debug=debug)
return y