mirror of
https://github.com/xiph/opus.git
synced 2025-05-14 23:48:28 +00:00
184 lines
8.4 KiB
Python
184 lines
8.4 KiB
Python
"""
|
|
/* Copyright (c) 2023 Amazon
|
|
Written by Jan Buethe */
|
|
/*
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions
|
|
are met:
|
|
|
|
- Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
|
|
- Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
|
|
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
"""
|
|
|
|
import torch
|
|
from torch import nn
|
|
import torch.nn.functional as F
|
|
|
|
import numpy as np
|
|
|
|
from utils.layers.limited_adaptive_comb1d import LimitedAdaptiveComb1d
|
|
from utils.layers.limited_adaptive_conv1d import LimitedAdaptiveConv1d
|
|
from utils.layers.td_shaper import TDShaper
|
|
from utils.complexity import _conv1d_flop_count
|
|
|
|
from models.nns_base import NNSBase
|
|
from models.silk_feature_net_pl import SilkFeatureNetPL
|
|
from models.silk_feature_net import SilkFeatureNet
|
|
from .scale_embedding import ScaleEmbedding
|
|
|
|
class NoLACE(NNSBase):
|
|
""" Non-Linear Adaptive Coding Enhancer """
|
|
FRAME_SIZE=80
|
|
|
|
def __init__(self,
|
|
num_features=47,
|
|
pitch_embedding_dim=64,
|
|
cond_dim=256,
|
|
pitch_max=257,
|
|
kernel_size=15,
|
|
preemph=0.85,
|
|
skip=91,
|
|
comb_gain_limit_db=-6,
|
|
global_gain_limits_db=[-6, 6],
|
|
conv_gain_limits_db=[-6, 6],
|
|
numbits_range=[50, 650],
|
|
numbits_embedding_dim=8,
|
|
hidden_feature_dim=64,
|
|
partial_lookahead=True,
|
|
norm_p=2,
|
|
avg_pool_k=4,
|
|
pool_after=False):
|
|
|
|
super().__init__(skip=skip, preemph=preemph)
|
|
|
|
|
|
self.num_features = num_features
|
|
self.cond_dim = cond_dim
|
|
self.pitch_max = pitch_max
|
|
self.pitch_embedding_dim = pitch_embedding_dim
|
|
self.kernel_size = kernel_size
|
|
self.preemph = preemph
|
|
self.skip = skip
|
|
self.numbits_range = numbits_range
|
|
self.numbits_embedding_dim = numbits_embedding_dim
|
|
self.hidden_feature_dim = hidden_feature_dim
|
|
self.partial_lookahead = partial_lookahead
|
|
|
|
# pitch embedding
|
|
self.pitch_embedding = nn.Embedding(pitch_max + 1, pitch_embedding_dim)
|
|
|
|
# numbits embedding
|
|
self.numbits_embedding = ScaleEmbedding(numbits_embedding_dim, *numbits_range, logscale=True)
|
|
|
|
# feature net
|
|
if partial_lookahead:
|
|
self.feature_net = SilkFeatureNetPL(num_features + pitch_embedding_dim + 2 * numbits_embedding_dim, cond_dim, hidden_feature_dim)
|
|
else:
|
|
self.feature_net = SilkFeatureNet(num_features + pitch_embedding_dim + 2 * numbits_embedding_dim, cond_dim)
|
|
|
|
# comb filters
|
|
left_pad = self.kernel_size // 2
|
|
right_pad = self.kernel_size - 1 - left_pad
|
|
self.cf1 = LimitedAdaptiveComb1d(self.kernel_size, cond_dim, frame_size=self.FRAME_SIZE, overlap_size=40, padding=[left_pad, right_pad], max_lag=pitch_max + 1, gain_limit_db=comb_gain_limit_db, global_gain_limits_db=global_gain_limits_db, norm_p=norm_p)
|
|
self.cf2 = LimitedAdaptiveComb1d(self.kernel_size, cond_dim, frame_size=self.FRAME_SIZE, overlap_size=40, padding=[left_pad, right_pad], max_lag=pitch_max + 1, gain_limit_db=comb_gain_limit_db, global_gain_limits_db=global_gain_limits_db, norm_p=norm_p)
|
|
|
|
# spectral shaping
|
|
self.af1 = LimitedAdaptiveConv1d(1, 2, self.kernel_size, cond_dim, frame_size=self.FRAME_SIZE, use_bias=False, padding=[self.kernel_size - 1, 0], gain_limits_db=conv_gain_limits_db, norm_p=norm_p)
|
|
|
|
# non-linear transforms
|
|
self.tdshape1 = TDShaper(cond_dim, frame_size=self.FRAME_SIZE, avg_pool_k=avg_pool_k, pool_after=pool_after)
|
|
self.tdshape2 = TDShaper(cond_dim, frame_size=self.FRAME_SIZE, avg_pool_k=avg_pool_k, pool_after=pool_after)
|
|
self.tdshape3 = TDShaper(cond_dim, frame_size=self.FRAME_SIZE, avg_pool_k=avg_pool_k, pool_after=pool_after)
|
|
|
|
# combinators
|
|
self.af2 = LimitedAdaptiveConv1d(2, 2, self.kernel_size, cond_dim, frame_size=self.FRAME_SIZE, use_bias=False, padding=[self.kernel_size - 1, 0], gain_limits_db=conv_gain_limits_db, norm_p=norm_p)
|
|
self.af3 = LimitedAdaptiveConv1d(2, 2, self.kernel_size, cond_dim, frame_size=self.FRAME_SIZE, use_bias=False, padding=[self.kernel_size - 1, 0], gain_limits_db=conv_gain_limits_db, norm_p=norm_p)
|
|
self.af4 = LimitedAdaptiveConv1d(2, 1, self.kernel_size, cond_dim, frame_size=self.FRAME_SIZE, use_bias=False, padding=[self.kernel_size - 1, 0], gain_limits_db=conv_gain_limits_db, norm_p=norm_p)
|
|
|
|
# feature transforms
|
|
self.post_cf1 = nn.Conv1d(cond_dim, cond_dim, 2)
|
|
self.post_cf2 = nn.Conv1d(cond_dim, cond_dim, 2)
|
|
self.post_af1 = nn.Conv1d(cond_dim, cond_dim, 2)
|
|
self.post_af2 = nn.Conv1d(cond_dim, cond_dim, 2)
|
|
self.post_af3 = nn.Conv1d(cond_dim, cond_dim, 2)
|
|
|
|
|
|
def flop_count(self, rate=16000, verbose=False):
|
|
|
|
frame_rate = rate / self.FRAME_SIZE
|
|
|
|
# feature net
|
|
feature_net_flops = self.feature_net.flop_count(frame_rate)
|
|
comb_flops = self.cf1.flop_count(rate) + self.cf2.flop_count(rate)
|
|
af_flops = self.af1.flop_count(rate) + self.af2.flop_count(rate) + self.af3.flop_count(rate) + self.af4.flop_count(rate)
|
|
shape_flops = self.tdshape1.flop_count(rate) + self.tdshape2.flop_count(rate) + self.tdshape3.flop_count(rate)
|
|
feature_flops = (_conv1d_flop_count(self.post_cf1, frame_rate) + _conv1d_flop_count(self.post_cf2, frame_rate)
|
|
+ _conv1d_flop_count(self.post_af1, frame_rate) + _conv1d_flop_count(self.post_af2, frame_rate) + _conv1d_flop_count(self.post_af3, frame_rate))
|
|
|
|
if verbose:
|
|
print(f"feature net: {feature_net_flops / 1e6} MFLOPS")
|
|
print(f"comb filters: {comb_flops / 1e6} MFLOPS")
|
|
print(f"adaptive conv: {af_flops / 1e6} MFLOPS")
|
|
print(f"feature transforms: {feature_flops / 1e6} MFLOPS")
|
|
|
|
return feature_net_flops + comb_flops + af_flops + feature_flops + shape_flops
|
|
|
|
def feature_transform(self, f, layer):
|
|
f = f.permute(0, 2, 1)
|
|
f = F.pad(f, [1, 0])
|
|
f = torch.tanh(layer(f))
|
|
return f.permute(0, 2, 1)
|
|
|
|
def forward(self, x, features, periods, numbits, debug=False):
|
|
|
|
periods = periods.squeeze(-1)
|
|
pitch_embedding = self.pitch_embedding(periods)
|
|
numbits_embedding = self.numbits_embedding(numbits).flatten(2)
|
|
|
|
full_features = torch.cat((features, pitch_embedding, numbits_embedding), dim=-1)
|
|
cf = self.feature_net(full_features)
|
|
|
|
y = self.cf1(x, cf, periods, debug=debug)
|
|
cf = self.feature_transform(cf, self.post_cf1)
|
|
|
|
y = self.cf2(y, cf, periods, debug=debug)
|
|
cf = self.feature_transform(cf, self.post_cf2)
|
|
|
|
y = self.af1(y, cf, debug=debug)
|
|
cf = self.feature_transform(cf, self.post_af1)
|
|
|
|
y1 = y[:, 0:1, :]
|
|
y2 = self.tdshape1(y[:, 1:2, :], cf)
|
|
y = torch.cat((y1, y2), dim=1)
|
|
y = self.af2(y, cf, debug=debug)
|
|
cf = self.feature_transform(cf, self.post_af2)
|
|
|
|
y1 = y[:, 0:1, :]
|
|
y2 = self.tdshape2(y[:, 1:2, :], cf)
|
|
y = torch.cat((y1, y2), dim=1)
|
|
y = self.af3(y, cf, debug=debug)
|
|
cf = self.feature_transform(cf, self.post_af3)
|
|
|
|
y1 = y[:, 0:1, :]
|
|
y2 = self.tdshape3(y[:, 1:2, :], cf)
|
|
y = torch.cat((y1, y2), dim=1)
|
|
y = self.af4(y, cf, debug=debug)
|
|
|
|
return y
|